Abstract
Wind turbines are vital to global renewable energy strategies, yet their aerodynamic performance often falls short of optimal levels, limiting overall efficiency and increasing operational loads. Flow controllers, devices designed to manipulate airflow around turbine blades, have emerged as a promising means of enhancing power capture while mitigating fatigue and structural stresses. This review presents a comprehensive synthesis of current research on aerodynamic optimization using flow controllers, covering both conventional and emerging technologies such as vortex generators, Gurney flaps, microtabs, and plasma actuators. The review evaluates the aerodynamic principles behind these devices, their reported performance improvements in laboratory and field studies, and their potential to extend turbine life and improve energy yield across various wind regimes. Additionally, it examines design considerations, including scalability, integration challenges, and potential trade-offs between efficiency gains and structural integrity. Knowledge gaps, particularly in long-term field validation, controller-turbine interaction modeling, and cost-benefit analysis, are also identified, along with future research directions to address these gaps. By consolidating existing findings, this study provides actionable insights for researchers and industry stakeholders, guiding the development of more efficient, reliable, and sustainable wind energy systems through advanced aerodynamic control solutions.
Recommended Citation
ALABI, Oluwaseyi O.; INAOLAJI, Adewale R.; and MUFUTAU, Monsuru O.
(2026)
"Enhancing Wind Turbine Aerodynamics with Flow Controller: A Review,"
Al-Bahir: Vol. 8:
Iss.
1, Article 5.
Available at: https://doi.org/10.55810/2313-0083.1116
References
1] Sedighi H, Akbarzadeh P, Salavatipour A. Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades : numerical investigation. Energy 2020;195:117056. https://doi.org/10.1016/j.energy.2020. 117056.
[2] Liu Y, Li P, He W, Jiang K. Numerical study of the effect of surface grooves on the aerodynamic performance of a NACA 4415 airfoil for small wind turbines. J Wind Eng Ind Aerod 2020;206(May):104263. https://doi.org/10.1016/j.jweia. 2020.104263.
[3] Shourangiz-Haghighi A, Haghnegahdar MA, Wang L, Mussetta M, Kolios A, Lander M. State of the art in the optimisation of wind turbine performance using CFD. Arch Comput Methods Eng 2020;27(2):413—31. https://doi.org/10. 1007/s11831-019-09316-0.
[4] Alabi OO, Gbadeyan OJ, Towoju OA, Deenadayalu N. Enhancing sustainable energy production through biomass gasification gas technology: a review [ version 1 ; peer re view : awaiting peer review ]. 2024. p. 1—14. https://doi.org/ 10.12688/f1000research.147958.1.
[5] Oukassou K, El S, Mouhsine E, Hajjaji E. Comparison comparison of of the the power , power , lift lift and and drag drag coefficients coefficients of of wind wind turbine turbine blade from aerodynamics charac. Procedia Manuf 2019;32(May):983—90. https://doi.org/10.1016/j.promfg.2019. 02.312.
[6] Alabi OO, Gbadeyan OJ, Bala A, Ogunsiji GO, Deenadayalu N. Study of combustion characteristics of diesel-vegetable oil blends utilizing an industrial fuel burner. Fuel Commun 2023;18(October 2023):100104. https:// doi.org/10.1016/j.jfueco.2023.100104. 62 AL-BAHIR (JOURNAL FOR ENGINEERING AND PURE SCIENCES) 2026;8:50—63
[7] Alabi OO, Ogunwoye FO, Gbadeyan OJ, Fasina AO, Deenadayalu N. Exploring the impact of diesel-vegetable oil blends as an alternative fuel in combustion chambers. Bio fuels 2024;0(0):1—8. https://doi.org/10.1080/17597269.2024. 2386482.
[8] Hou L, Shen S, Wang Y. Numerical study on aerodynamic performance of different forms of adaptive blades for ver tical axis wind turbines. 2021.
[9] Fatehi M, Nili-Ahmadabadi M, Nematollahi O, Minaiean A, Kim KC. Aerodynamic performance improvement of wind turbine blade by cavity shape optimization, vol. 132. Elsev ier B.V.; 2019. https://doi.org/10.1016/j.renene.2018.08.047.
[10] Saleem A, Kim MH. Aerodynamic performance optimiza tion of an airfoil-based airborne wind turbine using genetic algorithm. Energy 2020;203:117841. https://doi.org/10.1016/j. energy.2020.117841.
[11] Ung SK, Chong WT, Mat S, Ng JH, Kok YH, Wong KH. Investigation into the aerodynamic performance of a verti cal axis wind turbine with endplate design. Energies 2022; 15(19). https://doi.org/10.3390/en15196925.
[12] Khalil Y, Tenghiri L, Abdi F, Bentamy A. Improvement of aerodynamic performance of a small wind turbine. Wind Eng 2020;44(1):21—32. https://doi.org/10.1177/0309524X19 849847.
[13] Eftekhari H, Mahdi Al-Obaidi AS, Eftekhari S. Aero dynamic performance of vertical and horizontal axis wind turbines: a comparison review. Indones J Sci Technol 2022; 7(1):65—88. https://doi.org/10.17509/ijost.v7i1.43161.
[14] Akhter MZ, Omar FK. Review of flow-control devices for wind-turbine performance enhancement. Energies 2021; 14(5):1—35. https://doi.org/10.3390/en14051268.
[15] Mitchell S, Ogbonna I, Volkov K. Aerodynamic character istics of a single airfoil for vertical axis wind turbine blades and performance prediction of wind turbines. Fluid 2021; 6(7). https://doi.org/10.3390/fluids6070257.
[16] Asli M, Mashhadi Gholamali B, Mesgarpour Tousi A. Nu merical analysis of wind turbine airfoil aerodynamic per formance with leading edge bump. Math Probl Eng 2015; 2015. https://doi.org/10.1155/2015/493253.
[17] Attou Y, Bouhafs M, Feddal A. Numerical analysis of tur bulent flow and heat transfer enhancement using V-shaped grooves mounted on the Rotary Kiln's outer walls. J Therm Eng 2023;10(2):350—9. https://doi.org/10.18186/THERMAL. 1448621.
[18] J. Karthik and S. Vignesh, “Wind turbine aerodynamics and f low control”.
[19] Kundu P. Hydrodynamic performance improvement on small horizontal axis current turbine blade using different tube slots configurations. Appl Ocean Res 2019;91(August 2018):101873. https://doi.org/10.1016/j.apor.2019.101873.
[20] Pranto RI, Inam MI. Numerical analysis of the aerodynamic characteristics of NACA-4312 airfoil 2020;1(2):29—36.
[21] Kord K, Noori A, Hasanpour N, Heydari A, Askarpour H. Performance enhancements on wind turbines using flow controllers : a review. July; 2024. p. 1—46.
[22] Palanivendhan M, Chandradass J, Bannaravuri PK, Philip J, Shubham K. Aerodynamic simulation of optimized vortex generators and rear spoiler for performance vehicles. Mater Today Proc 2021;45:7228—38. https://doi.org/10.1016/j.matpr. 2021.02.537.
[23] Saad S, Briguglio W, Elmiligi H. The curious case of ma chine learning in Malware detection. Int Conf Inf Syst Secur Priv 2019:528—35. https://doi.org/10.5220/0007470705280535. [24] Karthikeyan N, Kalidasa Murugavel K, Arun Kumar S, Rajakumar S. Review of aerodynamic developments on small horizontal axis wind turbine blade. Renew Sustain Energy Rev 2015;42(April 2020):801—22. https://doi.org/10. 1016/j.rser.2014.10.086.
[25] Sharma P, Gupta B, Pandey M, Sharma AK, Nareliya Mishra R. Recent advancements in optimization methods for wind turbine airfoil design: a review. Mater Today Proc 2020;47(xxxx):6556—63. https://doi.org/10.1016/j.matpr.2021. 02.231.
[26] Potentier T, Guilmineau E, Finez A, Le Bourdat C, Braud C. High-Reynolds-number wind turbine blade equipped with root spoilers - part 1: unsteady aerodynamic analysis using URANS simulations. Wind Energy Sci 2022;7(2):647—57. https://doi.org/10.5194/wes-7-647-2022.
27] Yen SC, Liu WS, San KC, Wang WF. Design of wind-turbine blades for improving aerodynamic performance using hybrid blades. Ocean Eng 2021;227(2):108889. https://doi. org/10.1016/j.oceaneng.2021.108889.
[28] Yirtici O, Cengiz K, Ozgen S, Tuncer IH. Aerodynamic validation studies on the performance analysis of iced wind turbine blades. Comput Fluids 2019;192. https://doi.org/10. 1016/j.compfluid.2019.104271.
[29] Alabi OO, Adeaga OA, Dare AA. Reviewing the enhance ment optimum performance characteristics of horizontal axis wind turbine blades using add - on of suitable aero dynamic properties 2024;5(1):93—9. https://doi.org/10.14744/ thermal.0000848.
[30] Elsakka MM, Ingham DB, Ma L, Pourkashanian M. CFD analysis of the angle of attack for a vertical axis wind turbine blade. Energy Convers Manag 2019;182(September 2018): 154—65. https://doi.org/10.1016/j.enconman.2018.12.054.
[31] Chamorro LP, Arndt REA, Sotiropoulos F. Drag reduction of large wind turbine blades through riblets : evaluation of riblet geometry and application strategies. Renew Energy 2013;50: 1095—105. https://doi.org/10.1016/j.renene.2012.09.001. [32] Wang Z, Wang Y, Zhuang M. Improvement of the aero dynamic performance of vertical axis wind turbines with leading-edge serrations and helical blades using CFD and Taguchi method. Energy Convers Manag 2018;177(May): 107—21. https://doi.org/10.1016/j.enconman.2018.09.028.
[33] Li Q, Xu J, Kamada Y, Maeda T, Nishimura S. Experimental investigations of airfoil surface flow of a horizontal axis wind turbine with LDV measurements. Energy 2019:116558. https://doi.org/10.1016/j.energy.2019.116558.
[34] Chen K. Bionic coupling design and aerodynamic analysis of horizontal axis wind turbine blades. July; 2021. p. 1—13. https://doi.org/10.1002/ese3.953.
[35] Nakhchi ME, Naung SW, Rahmati M. High-resolution direct numerical simulations of fl ow structure and aero dynamic performance of wind turbine airfoil at wide range of Reynolds numbers. Energy 2021;225:120261. https://doi. org/10.1016/j.energy.2021.120261.
[36] Chen T, Jiang X, Wang H, Li Q. Investigation of leading- edge slat on aerodynamic performance of wind turbine blade0; 2020. p. 1—15. https://doi.org/10.1177/0954406 220941883. 0. [37] Wang Y, Li G, Shen S, Huang D, Zheng Z. Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-cylinder in front of the blade leading edge. Energy 2017. https://doi.org/10.1016/j.energy.2017.10.094.
[38] Erkan O, € Ozkan M, Karakoç TH, Garrett SJ, Thomas PJ. Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method. Renew Energy 2020;161:1359—67. https://doi.org/10. 1016/j.renene.2020.07.138.
[39] Erkan O, € Ozkan M, Karakoç TH, Garrett SJ, Thomas PJ. Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method. Renew Energy 2020;m. https://doi.org/10.1016/j. renene.2020.07.138.
[40] Akbari V, Naghashzadegan M, Kouhikamali R, Afsharpanah F. Multi-objective optimization and optimal airfoil blade selection for a small horizontal-axis wind tur bine (HAWT) for application in Regions with various wind potential. 2022.
[41] Alabi OO, Adeaga OA, Ajagbe SA, Adekunle EO, Adigun MO. Design and implementation of an alcohol detection driver system. Int J Reconfigurable Embed Syst 2024;13(2):278—85. https://doi.org/10.11591/ijres.v13.i2.pp278 -285.
[42] Ajagbe SA, Adeaga OA, Alabi OO. Design and develop ment of arduino-based automation home system using the AL-BAHIR (JOURNAL FOR ENGINEERING AND PURE SCIENCES) 2026;8:50—63 63 internet of things. Indones J Electr Eng Comput Sci 2024; 33(2):767—76. https://doi.org/10.11591/ijeecs.v33.i2.
[43] W. E. Handbook, “Aerodynamics of horizontal axis author’s note on aerodynamics”.
[44] Alabi OO, Adeaga OA, Ajagbe SA, Adekunle TS, Adigun MO. Performance of the solar PV module of the dual solar axis tracker of a smart home monitoring system. J Hunan Univ (Nat Sci) 2023;50(9). https://doi.org/10.55463/ issn.1674-2974.50.9.3.
[45] Li Q, Kamada Y, Takao M, Nishida Y. Experimental in vestigations of boundary layer impact on the airfoil aero dynamic forces of horizontal axis wind turbine in turbulent inflows. Energy 2017. https://doi.org/10.1016/j.energy.2017. 06.174.
[46] Micko P, Nosek R, Hrabovský P, Hecko D. The effect of airflow velocity through a laminar airflow ceiling (LAFC) on the assessment of thermal comfort in the operating room. Appl Sci 2023;13(8):4860. https://doi.org/10.3390/app13084860.
[47] Bala A, Alao BM, Oyedun AO, Alabi OO, Adamu M. Per formance evaluation of a solar photovoltaic (PV) module at different solar irradiance16; 2024. p. 63—75. https://doi.org/ 10.24107/ijeas.1430556. 2.
[48] Satwika, Sarwono NA, Hantoro R. Investigation flow on horizontal axis wind turbine with betz chord distribution, twist, and winglet. In: Proc. - 2018 4th Int. Conf. Sci. Technol. ICST 2018. 1; 2018. p. 1—6. https://doi.org/10.1109/ICSTC. 2018.8528653.
[49] Li L, Li YH, Liu QK, Lv HW. A mathematical model for hori zontal axis wind turbine blades. Appl Math Model 2014; 38(11—12):2695—715. https://doi.org/10.1016/j.apm.2013.10.068.
[50] Gaheen OA, Aziz MA, Hamza M, Kashkoush H, Khalifa MA. Fluid and structure analysis of wind turbine blade with winglet. J Adv Res Fluid Mech Therm Sci 2022; 90(1):80—101. https://doi.org/10.37934/arfmts.90.1.80101.
[51] Verma S, Paul AR, Jain A, Alam F. Numerical investigation of stall characteristics for winglet blade of a horizontal axis wind turbine. E3S Web Conf 2021;321. https://doi.org/10. 1051/e3sconf/202132103004.
[52] Reddy SR, Dulikravich GS, Sobieczky H, Gonzalez M. Bla delets-Winglets on blades of wind turbines: a multiobjective design optimization study. J Sol Energy Eng Trans ASME 2019;141(6). https://doi.org/10.1115/1.4043657.
[53] Mostafa Mazarbhuiya HMS, Biswas A, Sharma KK. A 2D nu merical simulation of blade twist effect on the aerodynamic performance of an asymmetric blade vertical axis wind turbine in low wind speed. EAI Endorsed Trans Energy Web 2020; 7(28):1—7. https://doi.org/10.4108/EAI.13-7-2018.162828.
[54] Khalafallah MG, Ahmed AM, Emam MK. The effect of using winglets to enhance the performance of swept blades of a horizontal axis wind turbine. Adv Mech Eng 2019;11(9): 1—10. https://doi.org/10.1177/1687814019878312.
[55] Satwika NA, Hantoro R, Sarwono S, Nugroho G. Exper imental investigation and numerical analysis on horizontal axis wind turbine with winglet and pitch var iations. Eng J 2019;23(6):345—60. https://doi.org/10.4186/ej. 2019.23.6.345. [56] Hansen TH, Mühle F. Winglet optimization for a model- scale wind turbine. Wind Energy 2018;21(8):634—49. https:// doi.org/10.1002/we.2183.
[57] Sessarego M, Ramos-Garcia N, Shen WZ. Analysis of winglets and sweep on wind turbine blades using a lifting line vortex particle method in complex inflow conditions. J Phys Conf Ser 2018;1037(2). https://doi.org/10.1088/1742- 6596/1037/2/022021.
[58] Khan T, Singh B, Thariq M, Sultan H. Performance of a HAWT rotor with a modified blade configuration. pertanika journals; 2021.
[59] Khaled M, Ibrahim MM, Abdel Hamed HE, AbdelGwad AF. Investigation of a small horizontal—axis wind turbine per formance with and without winglet. Energy 2019;187:115921. https://doi.org/10.1016/j.energy.2019.115921.
[60] Khaled M, Ibrahim MM, Abdel Hamed HE, AbdelGwad AF. Investigation of a small horizontal—axis wind turbine per formance with and without winglet. Energy 2019;187. https://doi.org/10.1016/j.energy.2019.115921.
[61] Li Z, Liu M, Cao X, Gao M, Cheng L, Sun H. Aerodynamic performance analysis and power generation characteristics experiment of vertical axis wind turbine. Eng Rep 2022;4(4): 1—14. https://doi.org/10.1002/eng2.12500.
[62] Zhang T-t, Elsakka M, Huang W, Wang Z-g, Ingham DB, Ma L, et al. Winglet design for vertical axis wind turbines based on a design of experiment and CFD approach. Energy Convers Manag 2019;195(February):712—26. https://doi.org/ 10.1016/j.enconman.2019.05.055.
[63] Abriham T, Temesgen M. Heliyon experimental character izations of hybrid natural fi ber-reinforced composite for wind turbine blades 2022;8(January). https://doi.org/10. 1016/j.heliyon.2022.e09092.
[64] Boria S, Santulli C, Raponi E, Sarasini F, Tirill o J. Evaluation of a new green composite solution for wind turbine blades. Multiscale Multidiscip Model Exp Des 2019;(April). https:// doi.org/10.1007/s41939-019-00043-4.
[65] Alessandro VD, Clementi G, Giammichele L, Ricci R. Assessment of the dimples as passive boundary layer con trol technique for laminar airfoils operating at wind turbine blades root region typical Reynolds numbers. Energy 2019; 170:102—11. https://doi.org/10.1016/j.energy.2018.12.070.
[66] Al-jibory MW, Abed H, Shinan A, Wang L. Simulation analysis on the blade airfoil of small wind turbine simula tion analysis on the blade airfoil of small wind turbine. 2019. https://doi.org/10.1088/1755-1315/295/2/012079.
[67] Sudhanshu SM, Sourabh RD, Sanjay NH, Shubhanga VK, Yash AK. Horizontal axis wind turbines passive flow control methods : a review horizontal axis wind turbines passive f low control methods: a review. 2021. https://doi.org/10. 1088/1757-899X/1136/1/012022.




Indexed in: