•  
  •  
 

Abstract

TiO is a semiconductor with a wide band gap and is utilized in various applications, including photovoltaics, solar cells, and photocatalysis. In this work, TiO thin films were fabricated using the doctor blade technique and deposited onto glass substrates. The purpose of the study was to investigate how beta irradiation affected the optical properties of the TiO films. The produced samples' absorbance and photon energy were the main subjects of the measurements. While the samples exposed to beta rays for 30, 60, and 90 minutes had direct band gaps of 3.87 eV, 3.75 eV, and 3.66 eV, the sample that wasn't exposed to radiation had a direct energy band gap of 3.90 eV. After being exposed to radiation for 30, 60, and 90 minutes, the indirect band gap for the control sample dropped to 3.17eV, 3.02 eV, and 3.28 eV from its initial value of 3.21 eV. These findings show that the direct and indirect energy band gaps gradually decrease as the duration of beta irradiation increases.

References

1] Berger LI. Semiconductor materials. CRC Press; 2020.

[2] Kazmerski LL. Electrical properties of polycrystalline semiconductor thin films. Polycrystal Amorphous Thin Films Divices 1980:59—134.

[3] Bange K, Ottermann C, Anderson O, Jeschkowski U, Laube M, Feile R. Investigations of TiO2 films deposited by different techniques. Thin Solid Films 1991;197(1—2):279—85.

[4] Mardare D, Baban C, Gavrila R, Modreanu M, Rusu G. On the structure, morphology and electrical conductivities of titanium oxide thin films. Surf Sci 2002;507:468—72.

[5] Pinto F, Wilson A, Moss B, Kafizas A. Systematic exploration of WO3/TiO2 heterojunction phase space for applications in photoelectrochemical water splitting. J Phys Chem C 2022; 126(2):871—84.

[6] Gatou M-A, Syrrakou A, Lagopati N, Pavlatou EA. Photocatalytic TiO2-based nanostructures as a promising material for diverse environmental applications: a review. Reactions 2024;5(1):135—94.

[7] a Fang H, aWang Q, aWang H, et al. Adv Funct Mater 2019; 29:1809013.

[8] Wang Z, Wang H, Liu B, Qiu W, Zhang J, Ran S, et al. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano 2011;5(10):8412—9.

[9] Meng A, Zhang L, Cheng B, Yu J. Dual cocatalysts in TiO2 photocatalysis. Adv Mater 2019;31(30):1807660.

[10] Ferhati H, Djeffal F, Martin N. Highly improved responsivity of self-powered UV—Visible photodetector based on TiO2/Ag/TiO2 multilayer deposited by GLAD technique: effects of oriented columns and nano-sculptured surface. Appl Surf Sci 2020;529:147069.

[11] Deng Y, Li S, Li X, Wang R. HI-assisted fabrication of Sndoping TiO2 electron transfer layer for air-processed perovskite solar cells with high efficiency and stability. Sol Energy Mater Sol Cell 2020;215:110594.

[12] Yu Z, Liu H, Zhu M, Li Y, Li W. Interfacial charge transport in 1D TiO2 based photoelectrodes for photoelectrochemical water splitting. Small 2021;17(9):1903378.

[13] Islam MN, P
odder J, Hossain KS, Sagadevan S. Band gap tuning of p-type al-doped TiO2 thin films for gas sensing applications. Thin Solid Films 2020;714:138382.

[14] Paul TC, Podder J, Paik L. Effect of Fe doping on the microstructure, optical and dispersion energy characteristics of TiO2 thin films prepared via spray pyrolysis technique. Results in Optics 2022;8:100235.

[15] Kanmaz _ I, Tomakin M, Aytemiz G, Manõr M, Nevruzoglu V. Influence of thermal annealing on the band-gap of TiO2 thin films produced by the sol-gel method. Recep Tayyip AL-BAHIR (JOURNAL FOR ENGINEERING AND PURE SCIENCES) 2025;7:124—130 129 Erdogan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 2024;5(1):49—56.

[16] Aldhuhaibat MJ, Hussein M, Hyder M, Amana MS. Study of the irradiation effect by α-particles on optical properties of ZnO: 6% in thin films. In: Journal of Physics, 1484. IOP Publishing; 2020. p. 012003. 1.

[17] Paufler P, Barrett CS, Massalski TB. Structure of metals. New York, Toronto, Sydney, Paris Frankfurt/M: Pergamon Press Oxford; 1980. p. 654. Seiten, 113 Abbildungen, 19 Tabellen und über 1400 Literaturhinweise. Preis US $20.—," ed: Wiley Online Library, 1981.

[18] Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Povey M, et al. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J Nanoparticle Res 2010;12:1625—36.

[19] Ali I, Imanova G, Agayev T, Aliyev A, Bentalib A, Kurniawan TA, Mbianda XY, et al. Sustainable hydrogen production by water decomposition in gamma radiolysis with post-modification studies of nano-BeO photocatalyst. J Chem Technol Biotechnol 2025;100(7):1463—71. https://doi. org/10.1002/jctb.7876.

[20] Verma R, Kumar V, Kango S, Khilla A, Gupta R. Microstructural, wettability, and corrosion behaviour of TiO2 thin film sputtered on aluminium. J Cent S Univ 2024;31(7): 2210—24.

[21] Tusseyev T, Kuykabayeva A, Danlybaeva A, Zulbuharova E, Doszhanov O. The effect of γ-ray-radiation on surface physicochemical processes on Al2O3. In: Journal of Physics: Conference Series. 2984. IOP Publishing; 2025. p. 012021. 1.

[22] Hussain J. Development of a telescope detector for Sr-90 detection. 2022.

[23] Kim BH, Kwon JW. Plasmon-assisted radiolytic energy conversion in aqueous solutions. Sci Rep 2014;4(1):5249.

[24] Bourezgui A, Kacem I, Daoudi M, Al-Hossainy AF. Influence of gamma-irradiation on structural, optical and photocatalytic performance of TiO 2 nanoparticles under controlled atmospheres. J Electron Mater 2020;49: 1904—21.

[25] Abazovc ND, Comor MI, Dramicanin MD, Jovanovic DJ, Ahrenkiel SP, Nedeljkovic JM. Photoluminescence of anatase and rutile TiO2 particles. J Phys Chem B 2006;110 (50):25366—70.

[26] Al-Hossainy A, Ibrahim A. Facile synthesis, X ray single crystal and optical characterizations of Cu-diphenylphosphino-methane organic crystalline semi-conductors. J Optoelectron Adv Mater 2014;16:1472—80.

[27] Glusker JP, Trueblood KN. Crystal structure analysis: a primer. Oxford University Press; 2010.

[28] Thamaphat K, Limsuwan P, Ngotawornchai B. Phase characterization of TiO2 powder by XRD and TEM. Agriculture and Natural Resources 2008;42(5):357—61.

[29] Monshi A, Foroughi MR, Monshi MR. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2012;2(3):154—60.

Included in

Other Physics Commons

Share

COinS