Abstract
Radiological risk assessment is pivotal for safeguarding human health and ecosystems amid expanding radiation applications in technology and medicine. This review systematically evaluates the efficacy of hazard indices like the Annual Effective Dose Equivalent (AEDE) and Excess Lifetime Cancer Risk (ELCR) across environmental (soil, water) and biological (tissues, crops) samples, addressing critical gaps in comparative methodologies, a PRISMA-guided systematic. Literature review was conducted across Scopus, PubMed, and Web of Science, analyzing more than 100 peer-reviewed studies (2010–2024) that met the inclusion criteria: English-language publications, multi-index comparisons, and empirical validations. Exclusion criteria removed non-peer-reviewed works and studies focusing on a single index. Key findings reveal stark disparities in index performance: AEDE excels in environmental contexts by integrating chronic exposure pathways (e.g., Cesium-137 in soil). ELCR’s tissue-specific risk coefficients better capture biological carcinogenesis (e.g., Strontium-90 in bone marrow). Also, oversimplified assumptions like neglecting soil biogeochemistry or interspecies variability compromise accuracy, particularly in regions where high natural background radiation (e.g., Ramsar, Iran). The review underscores the urgency of standardizing indices to reflect radiochemical interactions and bioavailability, supported by emerging tools like AI-driven predictive models, which enhance real-time risk mapping and adaptive monitoring. Future frameworks must harmonize interdisciplinary insights (physics, chemistry, policy) to address novel challenges, including space radiation and non-human biota protection and this synthesis provides actionable guidance for researchers and policymakers to refine risk protocols, ensuring they align with evolving technological and environmental realities.
Recommended Citation
Ahmed, Israa K.; Farhan, Sabah S.; and Rzaij, Jamal M.
(2025)
"Assessment of Radiological Risk Hazard Indices for Diverse Environmental and Biological Samples: A Comprehensive Review,"
Al-Bahir: Vol. 7:
Iss.
2, Article 1.
Available at: https://doi.org/10.55810/2313-0083.1105
References
[1] Dowell SM. Utilising plutonium isotopes to evaluate soil erosion in tropical East African agri-systems. University of Plymouth; 2024.
[2] Moss B. The water framework directive: total environment or political compromise? Sci Total Environ [Internet] 2008 Aug;400(1—3):32—41. Available from: https://linkinghub. elsevier.com/retrieve/pii/S004896970800449X
. [3] Ahmed IK, Khalaf HNB, Mostafa MYA. Estimating radon excess lung cancer at the babylon cement plant in Iraq. J Nucl Eng Radiat Sci [Internet] 2022 Jul 1;8(3). Available from: https://asmedigitalcollection.asme.org/nuclearengineering/ article/8/3/032003/1096368/Estimating-Radon-Excess-LungCancer-at-the-Babylon.
[4] Anderson PM, Thomas SM, Sartoski S, Scott JG, Sobilo K, Bewley S, et al. Strategies to mitigate chemotherapy and radiation toxicities that affect eating. Nutrients [Internet] 2021 Dec 8;13(12):4397. Available from: https://www.mdpi. com/2072-6643/13/12/4397.
[5] Sudhakar K, Thanuskodi S. Marine pollution bulletin: a scientometric analysis. Libr Philos Pract [Internet] 2018;1. Available from: https://api.semanticscholar.org/CorpusID: 135364025.
[6] Pawel DJ. U.S. environmental protection agency radiogenic risk projections. Health Phys [Internet] 2013 Jan;104(1): 26—40. Available from: https://journals.lww.com/00004032- 201301000-00004.
[7] Idris MM, Ubaidullah A, Sulayman MB, Abdullahi B, Sidi MA. Assessment of gamma background exposure levels in some selected residential houses in FCT Abuja, Nigeria. J Radiat Nucl Appl [Internet] 2021 Sep 1;6(3):245—8. Available from: https://www.naturalspublishing.com/ Article.asp?ArtcID=24321.
[8] UNSCEAR. Sources and effects of ionizing radiation―exposures of the public and workers from various sources of radiation―UNSCEAR 2008 report. New York, NY, USA: United Nations Publication; 2010.
[9] . Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments [Internet]. Vienna: International Atomic energy Agency; 2010. p. 194 (Technical Reports Series). Available from: https://www.iaea.org/publications/8201/handbook of-parameter-values-for-the-prediction-of-radionuclidetransfer-in-terrestrial-and-freshwater-environments.
[10] Weiss W, Larsson CM, McKenney C, Minon JP, Mobbs S, Schneider T, et al. ICRP publication 122: radiological protection in geological disposal of long-lived solid radioactive waste. Ann ICRP [Internet] 2013 Jun 1;42(3):1—57. Available from: https://journals.sagepub.com/doi/10.1016/j.icrp.2013. 01.001.
[11] Dewulf J, Van Langenhove H, Muys B, Bruers S, Bakshi BR, Grubb GF, et al. Exergy: its potential and limitations in environmental science and technology. Environ Sci Technol [Internet] 2008 Apr 1;42(7):2221—32. Available from: https:// pubs.acs.org/doi/10.1021/es071719a.
[12] Mihelcic JR, Crittenden JC, Small MJ, Shonnard DR, Hokanson DR, Zhang Q, et al. Sustainability science and engineering: the emergence of a new metadiscipline. Environ Sci Technol [Internet] 2003 Dec 1;37(23):5314—24. Available from: https://pubs.acs.org/doi/10.1021/es034605h.
[13] Masciangioli T, Zhang WX. Peer reviewed: environmental technologies at the nanoscale. Environ Sci Technol [Internet] 2003 Mar 1;37(5):102A—8A. Available from: https://pubs.acs.org/doi/10.1021/es0323998. 70 AL-BAHIR (JOURNAL FOR ENGINEERING AND PURE SCIENCES) 2025;7:62—71
[14] Roco MC. Environmentally responsible development of nanotechnology. Environ Sci & Technol [Internet] 2005;39 (5):106A—12A. https://doi.org/10.1021/es053199u. Available from:.
[15] Hricak H, Abdel-Wahab M, Atun R, Lette MM, Paez D, Brink JA, et al. Medical imaging and nuclear medicine: a Lancet Oncology Commission. Lancet Oncol [Internet] 2021 Apr;22(4):e136—72. Available from: https://linkinghub. elsevier.com/retrieve/pii/S1470204520307518.
[16] World Health Organisation. National stockpiles for radiological and nuclear emergencies: policy advice [Internet]. 2023. p. 1—66. Available from: https://iris.who.int/bitstream/ handle/10665/365681/9789240067875-eng.pdf?sequence=1.
[17] Akhtar N, Tufail M, Ashraf M. Natural environmental radioactivity and estimation of radiation exposure from saline soils. Int J Environ Sci Technol [Internet] 2005 Dec 5;1 (4):279—85. Available from: http://link.springer.com/10. 1007/BF03325843.
[18] The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007;37(2—4):1—332.
[19] Morton LM, Karyadi DM, Stewart C, Bogdanova TI, Dawson ET, Steinberg MK, et al. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science (80-) [Internet] 2021 May 14; 372(6543). Available from: https://www.science.org/doi/10. 1126/science.abg2538.
[20] James AO. Post-treatment of municipal wastewater using microalgae and activated sludge synergy Abraham Olamilekan James post-treatment of municipal wastewater using microalgae and activated sludge synergy. 2023. p. 124.
[21] Buesseler K, Dai M, Aoyama M, Benitez-Nelson C, Charmasson S, Higley K, et al. Fukushima Daiichi—derived radionuclides in the ocean: transport, fate, and impacts. Ann Rev Mar Sci [Internet] 2017 Jan 3;9(1):173—203. Available from: https://www.annualreviews.org/doi/10.1146/ annurev-marine-010816-060733.
[22] Hussein M, Clark CH, Nisbet A. Challenges in calculation of the gamma index in radiotherapy - towards good practice. Phys medica PM an Int J devoted to Appl Phys to Med Biol Off J Ital Assoc Biomed Phys 2017 Apr;36:1—11.
[23] Scott J a. Measurement of dose equivalents from external photon and electron radiations: ICRU report 47 and international commission on radiation units and measurements. 1993. Bethesda.
[24] Yaqub M, Mee-Ngern L, Lee W. Cesium adsorption from an aqueous medium for environmental remediation: a comprehensive analysis of adsorbents, sources, factors, models, challenges, and opportunities. Sci Total Environ [Internet] 2024 Nov;950:175368. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S0048969724055189.
[25] Bevelacqua JJ. Contemporary health physics [Internet]. Wiley; 2009. Available from: https://onlinelibrary.wiley. com/doi/book/10.1002/9783527626809.
[26] Zhu H, Heinitz S, Binnemans K, Mullens S, Cardinaels T. 225 Ac/213 Bi radionuclide generators for the separation of 213 Bi towards clinical demands. Inorg Chem Front [Internet] 2024;11(15):4499—527. Available from: https:// xlink.rsc.org/?DOI=D4QI00326H.
[27] Liu G, Luo Q, Ding M, Feng J. Natural radionuclides in soil near a coal-fired power plant in the high background radiation area, South China. Environ Monit Assess [Internet] 2015 Jun 15;187(6):356. Available from: http://link.springer. com/10.1007/s10661-015-4501-y.
[28] Al-Kaabi MA, Hmood AN. Study of the radiological doses in Karbala city. Int J Radiat Res [Internet] 2019;17(1). Available from: http://ijrr.com/article-1-2470-en.html.
[29] Keum DK, Jun I, Lim KM, Choi YH. Approach to nonhuman species radiation dose assessment in the Republic of Korea. Radiat Prot Dosimetry [Internet] 2011 Jul 1;146(1—3): 299—302. Available from: https://academic.oup.com/rpd/ article-lookup/doi/10.1093/rpd/ncr175.
[30] Salbu B, Lind OC, Skipperud L. Radionuclide speciation and its relevance in environmental impact assessments. J Environ Radioact [Internet] 2004 Jan;74(1—3):233—42. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S0265931X0400013X.
[31] Molinar-Inglis O, DiCarlo AL, Lapinskas PJ, Rios CI, Satyamitra MM, Silverman TA, et al. Radiation-induced multi-organ injury. Int J Radiat Biol [Internet] 2024 Mar 3; 100(3):486—504. Available from: https://www.tandfonline. com/doi/full/10.1080/09553002.2023.2295298.
[32] Cucinotta FA, Pak S. Cancer and circulatory disease risks for the largest solar particle events in the space age. Life Sci Sp Res [Internet] 2024 Feb;40:1—7. Available from: https:// linkinghub.elsevier.com/retrieve/pii/S2214552423000792.
Indexed in: