Al-Bahir Journal for Engineering and Pure Sciences
Abstract
The powder metallurgy method was employed to fabricate aluminum-based composite samples reinforced with nano silica at varying weight fractions of 2, 4, 6, 8, and 10 wt.%. The powders were mixed, dried, and compacted using a hydraulic press at 7 tons of pressure for one minute, followed by thermal sintering in an oven at 600°C for two hours. Structural characterization was conducted using scanning electron microscopy (SEM) and X-ray diffraction (XRD), while thermal analysis included thermal conductivity, heat capacity, thermal diffusivity, thermal flux, and thermal resistance. The results revealed that the optimal nano silica reinforcement ratio was 10%, yielding notably improved properties. SEM images confirmed surface homogeneity and strong granular cohesion, whereas XRD and energy-dispersive X-ray spectroscopy (EDX) identified aluminum in the cubic crystal system, while nano silica exhibited partial crystallization and a broad maximum peak at (2θ = 22–25°) with a Miller index of (111). Thermal analysis indicated a gradual decline in thermal conductivity as the nano silica content increased, with the lowest thermal conductivity recorded at 112 W/m.K and the lowest thermal effusively at 265.990 W.s1/2 /m².K. Similarly, the thermal diffusivity reached a minimum of 0.1098 mm²/sec at 10 wt.% silica reinforcement. Furthermore, the thermal capacity decreased, whereas thermal resistance increased with higher reinforcement ratios, reaching a minimum heat capacity of 302.251 J/Kg.K and a maximum thermal resistance of 3.366×10⁻⁶ W/m².K at 10 wt.% silica. These findings highlight the potential of nano silica reinforcement in enhancing the thermal performance of aluminum-based composites.
Recommended Citation
Darweesh, Salih Y. and Mahal, Ghazi F.
(2025)
"Effect of Adding Nano Silica on Some Structural and Thermal Properties of Aluminum,"
Al-Bahir Journal for Engineering and Pure Sciences: Vol. 6:
Iss.
2, Article 4.
Available at: https://doi.org/10.55810/2313-0083.1094
References
1. MANOHAR, Guttikonda, BHUSHAN, Chilkoti, SUDHIR, Kumar, and RAVI, Kumar. Fabrication of metal matrix composites by powder metallurgy: a review. In: AIP Conference Proceedings. AIP Publishing, 2018. https://doi.org/10.1063/1.5032003.
2. BRILLON, A., GARCIA, J., RIALLANT, F., GARNIER, C., JOULAIN, A., LU, Y., and SILVAIN, J. F. Characterization of Al/B4C composite materials fabricated by powder metallurgy process technique for nuclear applications. In: Journal of Nuclear Materials, 2022, vol. 565, p. 153724. https://doi.org/10.1016/j.jnucmat.2022.153724
3. BUREŠ, R., STREČKOVÁ, M., FABEROVA, M., KOLLAR, P., and FÜZER, J. Advances in powder metallurgy soft magnetic composite materials. In: Archives of Metallurgy and Materials, 2017, vol. 62. http://dx.doi.org/10.1515/amm-2017-0168
4. GLAGE, Alexander, CECCATO, Riccardo, LONARDELLI, Isabella, GIRARDI, Francesca, AGRESTI, Fabrizio, PRINCIPI, Giovanni, GIALANELLA, Simone. A powder metallurgy approach for the production of a MgH₂–Al composite material. In: Journal of Alloys and Compounds, 2009, vol. 478, no. 1-2, pp. 273-280. https://doi.org/10.1016/j.jallcom.2008.12.032
5. FANG, Zhigang Zak, PARAMORE, James D., SUN, Pei, CHANDRAN, Krishnaswamy R., ZHANG, Ying, XIA, Yang, FREE, Michael. Powder metallurgy of titanium–past, present, and future. In: International Materials Reviews, 2018, vol. 63, no. 7, pp. 407-459. https://doi.org/10.1080/09506608.2017.1366003
6. ANGELO, P. C.; SUBRAMANIAN, Ramayyar; RAVISANKAR, B. Powder metallurgy: science, technology and applications. PHI Learning Pvt. Ltd., 2022.
7. TSUKERMAN, Samarij A. Powder metallurgy. Elsevier, 2013.
8. HUMEEDI, Sufian H.; ABDULKAREEM, Saadoon M.; DARWEESH, Salih Y. The synthetic and mechanical properties of a silica matrix cermet composite. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2022, 37.3: 423-428. https://doi.org/10.1007/s11595-022-2548-5
9. WANG, Jian, ZHANG, Hao, YANG, Li, ZHANG, Shuai, HAN, Xue, HU, Wei. In situ implanting 3D carbon network reinforced zinc composite by powder metallurgy for highly reversible Zn‐based battery anodes. In: Angewandte Chemie International Edition, 2024, vol. 63, no. 10, e202318149. https://doi.org/10.1002/anie.202318149
10. ANGELO, P. C.; SUBRAMANIAN, Ramayyar; RAVISANKAR, B. Powder metallurgy: science, technology and applications. PHI Learning Pvt. Ltd., 2022.
11. VELEVA, L., SCHAEUBLIN, R., BATTABYAL, M., PLOCISKI, T., and BALUC, N. Investigation of microstructure and mechanical properties of W–Y and W–Y₂O₃ materials fabricated by powder metallurgy method. International Journal of Refractory Metals and Hard Materials, 2015, vol. 50, pp. 210-216. https://doi.org/10.1016/j.ijrmhm.2015.01.011
12. PENTIMALLI, M., FRAZZICA, A., FRENI, A., IMPERI, E., and PADELLA, F. Metal hydride-based composite materials with improved thermal conductivity and dimensional stability properties. Advances in Science and Technology, 2011, vol. 72, pp. 170-175. https://doi.org/10.4028/www.scientific.net/AST.72.170
13. ZAINAB, AL-Ramadhan; FARHAN, Fadhil Kareem; KAHDIM, Bahjat Bahloul. Thermal properties of polymer blend reinforced nano–Sic nanocomposite. Australian Journal of Basic and Applied Sciences, 2014, 8.18: 496-502.
14. MARCUS, Sanford M.; BLAINE, Roger L. Thermal conductivity of polymers, glasses and ceramics by modulated DSC. Thermochimica Acta, 1994, 243.2: 231-239. https://doi.org/10.1016/0040-6031(94)85058-5
15. HU, Min; YU, Demei; WEI, Jianbo. Thermal conductivity determination of small polymer samples by differential scanning calorimetry. Polymer testing, 2007, 26.3: 333-337. https://doi.org/10.1016/j.polymertesting.2006.11.003
16. CHATTERJEE, A. K. X-ray diffraction. Handbook of analytical techniques in concrete science and technology, 2000, 200: 275-332.
17. KHAN, H., YERRAMILLI, A. S., D'OLIVEIRA, A., ALFORD, T. L., BOFFITO, D. C., and PATIENCE, G. S. Experimental methods in chemical engineering: X‐ray diffraction spectroscopy—XRD. The Canadian Journal of Chemical Engineering, 2020, vol. 98, no. 6, pp. 1255-1266. https://doi.org/10.1002/cjce.23747
18. KHALLAWI, Hussein Kadhim; ALMOHAISEN, Abdul Mohsin Naji; HASSAN, Kharia Salman. Mechanical properties of sandwich nano composite of epoxy/chopped S-glass fiber reinforced by SiO2, ZrO2 nano particles for core and skin Al 6061-T6. In: AIP Conference Proceedings. AIP Publishing, 2024. https://doi.org/10.1063/5.0237194
19. SALIH, Waleed A.; ALLAH, Sabah M. Aman; DARWEESH, Salih Y. Effect of spray angle on some physical properties of a ceramic system produced by thermal spraying coating. Al-Bahir Journal for Engineering and Pure Sciences, 2023, 2.2: 4. https://doi.org/10.55810/2312-5721.1022
20. SALIH, E. J., ALLAH, S. M. A., DARWEESH, S. Y., and MOHAMMED, H. A. Study of some of the physical variables of a metal-based system using the powder method. Journal of Physics: Conference Series, September 2021, vol. 1999, no. 1, p. 012068. IOP Publishing. https://doi:10.1088/1742-6596/1999/1/012068
21. AHMED, Mohammed N.; DAHAM, Najat A.; DARWEESH, Salih Y. Structural and mechanical properties for (Ni-WC) system by using thermal spray. In: AIP Conference Proceedings. AIP Publishing, 2024. https://doi.org/10.1063/5.0181722
22. ALI, Alaa Y.; ABDULQADER, Mohammed S.; DARWEESH, Salih Y. Treatment of turbine blades in electric power stations by adding nano oxides to the matrix material (Al80-Ni20). Engineering Research Express, 2024, 6.4: 045515. https://doi.org/10.1088/2631-8695/ad84a3
23. ANTAR, Riyadh S.; DARWEESH, Salih Y.; RIDHA, Fatima W. Production of a double cermet coating to treatment of the turbine blades. Engineering Research Express, 2024, 6.1: 015407. https://doi.org/10.1088/2631-8695/ad2f82
24. LAWLEY, Alan; MURPHY, Thomas F. Metallography of powder metallurgy materials. Materials characterization, 2003, 51.5: 315-327. https://doi.org/10.1016/j.matchar.2004.01.006
25. WANG, H., ZHANG, R., HU, X., WANG, C. A., and HUANG, Y. Characterization of a powder metallurgy SiC/Cu–Al composite. Journal of Materials Processing Technology, 2008, vol. 197, no. 1-3, pp. 43-48. https://doi.org/10.1016/j.jmatprotec.2007.06.002
26. RIDHA, Fatima W. Calculation of Thermal Conductivity, Mechanical Properties Values at Adding Copper to a Base of Zirconia by Powder Method. Al-Bahir Journal for Engineering and Pure Sciences, 2024, 4.1: 3. https://doi.org/10.55810/2313-0083.1049
27. EDISON SELVARAJ, D.; PUGAZHENDHI SUGUMARAN, C.; SIVAPRAKASH, A. Characterization of Electrical and Thermal Properties of Enamel Filled with Carbon Nanotubes. In: Proceedings of the Third International Conference on Trends in Information, Telecommunication and Computing. Springer New York, 2013. p. 645-653. https://doi.org/10.1007/978-1-4614-3363-7_78
28. HASSAN, Zainab Kassim. Evaluating the Influence of Adding Natural Materials to Copper and Zinc Compounds. In: Materials Science Forum. Trans Tech Publications Ltd, 2022. p. 95-102.
29. https://doi.org/10.4028/www.scientific.net/MSF.1050.95
30. KURT, Adem; ATES, Hakan. Effect of porosty on thermal conductivity of powder metal materials. Materials & design, 2007, 28.1: 230-233. https://doi.org/10.1016/j.matdes.2005.06.020
31. HADI, H. A., KASIM, S. T., FARHAN, F. K., ISMAIL, R. A., and HABUBI, N. F. Effect of porosity on thermal properties of porous silicon. Silicon, 2023, vol. 15, no. 6, pp. 2715-2725. https://doi.org/10.1007/s12633-022-02185-6
32. ALZUKAIMI, Julian; JABRAH, Rafi. Porous alumina‐based ceramics with very low thermal conductivity prepared by the starch consolidation route. International Journal of Ceramic Engineering & Science, 2024, e10226. https://doi.org/10.1002/ces2.10226
33. SHI, H. H., RUAN, H. X., CHEN, Z. J., ZHANG, Y., ZOU, C. L., ZHANG, X. C., ... & LI, B. Shape memory, thermal conductivity, and mechanical property of polylactic acid and natural rubber composites reinforced by an inorganic thermal conductive network. Journal of Applied Polymer Science, 2022, vol. 139, no. 30, e52668. https://doi.org/10.1002/app.52668
Indexed in: