•  
  •  
 

Al-Bahir Journal for Engineering and Pure Sciences

Abstract

This paper deals with the review of various existing technique for the microcracks detection in silicon solar cell and wafer. In addition to this, we proposed a novel approach for the machine learning technique for the inspection of the cracks those are existed in the solar cell and wafer and not able to detect by the naked eyes. There are many techniques have been developed by the various researchers around the world to inspect solar cells for defect. All the techniques discussed in this article having some features and some weakness too. This paper present here gives the two-fold solution for the microcrack detection that will benefit the scientist and engineers for the development of the machine vision system to find out the cracks in the solar cells and solar wafers.

References

[1] Zebra EIC, van der Windt HJ, Nhumaio G, APC Faaij. A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renew Sustain Energy Rev 2021;144:111036.

[2] Devadiga D, M, Selvakumar, P Shetty, Santosh M S. Recent progress in dye-sensitized solar cell materials and photosupercapacitors: A review. J Power Sources 2021;493:229698.

[3] Herlufsen S, Schmidt J, Hinken D, Bothe K, Brendel R. Photo conductance-calibrated photoluminescence lifetime imaging of crystalline silicon. Phys Status Solidi 2008;2:245e7.

[4] Liu L, Sclaroff S. Deformable model-guided region split and merge of image regions. Image Vis Comput 2004;22:343e54.

[5] Zimmermann CG. The impact of mechanical defects on the reliability of solar cells in aerospace applications. IEEE Trans Device Mater Reliab 2006;6:486e94.

[6] Israil M, Anwar SA, Abdullah MZ. Automatic detection of micro-crack in solar wafers and cells: a review. Trans Inst Meas Control 2013;35(5):606e18. https://doi.org/10.1177/ 0142331212457583.

[7] Israil Mohd, Kerm Abdul Ghani Yousseph. Non-destructive microcracks detection techniques in silicon solar cell. Phys Sci Int J 2014;4(8):1073e87.

[8] Kontges M, Kunze I, Kajari-Schroder S, Breitenmoser X, Bjorneklett B. The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks. Sol Energy Mater Sol Cells 2011;95:1131e7.

[9] Abbott MD, Cotter JE, Trupke T, Fisher K, Bardos RA. Application of photoluminescence to high-efficiency silicon solar cell fabrication. In: Proceedings of the 4th world conference on photovoltaic energy conversion. Waikoloa. vol. 1; 2006. p. 1211e4.

[10] Abdullah MZ, Fathinul-Syahir AS, Mohd-Azemi BMN. Automated inspection system for colour and shape grading of starfruit (Averrhoa carambola L.) using machine vision sensor. Trans Inst Meas Control 2005;27:65e87.

[11] Dunlop ED, Halton D. Radiometric pulse and thermal imaging methods for the detection of physical defects in solar cells and Si wafers in a production environment. Sol Energy Mater Sol Cell 2004;82:467e80.

[12] Breitenstein O, Bauer J, Kittler M, Arguirov T, Seifert W. EBIC and luminescence studies of defects in solar cells. Scanning 2008;30:331e8.

[13] Jayanthi N, Ghosh T, Meena RK, Verma M. Length and width of low-light, concrete hairline crack detection and measurement using image processing method. Asian J Civ Eng 2024;25(3):2705e14. 2024. ISSN: 2522-011X.

[14] Nigam M, Verma M. Prediction of compressive strength of nano-silica concrete by using random forest algorithm. Asian J Civ Eng 2024;25(7):5205e13. 2024. ISSN: 2522-011X.

[15] Gupta M, Upreti K, Yadav S, Verma M, Mageswari M, Tiwari A. Assessment of ML techniques and suitability to predict the compressive strength of high-performance concrete (HPC). Asian J Civ Eng 2024. In Press, 2024. ISSN: 2522- 011X.

[16] Kittler M, Kveder VV, Schroter W. Temperature dependence of the recombination activity at contaminated dislocations in Si: a model describing the different EBIC contrasts behaviour. Diffus Defect Data, Pt B: Solid State Phenom 1999;69: 417e22.

[17] Zook JD. Effects of grain boundaries in polycrystalline solar cells. Appl Phys Lett 1980;37:223e6.

[18] Kumar P, Ghosekar I, Narayan KS. High-speed laser beam induced current imaging: a complementary quantitative diagnostic tool for modules. IEEE J Photovoltaics Nov. 2021;11(6): 1436e45. https://doi.org/10.1109/JPHOTOV.2021.3106894.

[19] Carstensen J, Popkirov G, Bahr J, Foll H. CELLO: an advanced LBIC measurement technique for solar cell local characterization. Sol Energy Mater Sol Cell 2003;76: 599e611.

[20] Bajaj J, Tennant WE. Remote contact LBIC imaging of defects in semiconductors. J Cryst Growth 1990;103:170e8.

[21] Qian, X, H Zhang, C Yang, Y Wu, Z He, H Zhang, et al. Micro-cracks detection of multicrystalline solar cell surface based on self-learning features and low-rank matrix recovery. Sens Rev 2018;38(3):360e8.

[22] Thantsha NM, Macabebe EQB, Vorester FJ, Dyk EEV. Optoelectronic analysis of silicon cell by LBIC investigations and current-voltage characterization. Physica B 2009;404: 4445e8.

[23] Chiou YC, Liu JZ, Liang YT. Micro crack detection of multicrystalline silicon solar wafer using machine vision techniques. Sens Rev 2011;31:154e65.

[24] Dallas W, Polupan O, Ostapenko S. Resonance ultrasonic vibrations for crack detection in photovoltaic silicon wafers. Meas Sci Technol 2007;18:852e8.

[25] Dutra TA, Pires AP, Bedrikovetsky PG. A new splitting scheme and existence of elliptic region for gasflood modelling. SPE J 2009;14:101e11.

[26] Farid S, Ahmed F. Application of Niblack's method on images. In: Proceedings of international conference on emerging technologies. Islamabad; 2009. p. 280e6.

[27] Fuyuki T, Kitiyanan A. Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence. Appl Phys Mater Sci Process 2009;96:189e96.

[28] Monastyrskyi A, Ostapenko S, Polupan O, Maeckel H, Vazquez M. Resonance Ultrasonic Vibrations for in-line crack detection in silicon wafers and solar cells. In: Proceedings of 33th PVSC photovoltaic specialists conference. Tampa; 2008. p. 1e6.

[29] Hilmersson C, Hess DP, Dallas W, Ostapenko S. Crack detection in single-crystalline silicon wafers using impact testing. Appl Acoust 2008;69:755e60.

[30] Giesecke JA, Michl B, Schindler F, Schubert MC, Warta W. Minority carrierlifetime of silicon solar cells from quasi-steadystate photoluminescence. Sol Energy Mater 2011;95:1979e82.

[31] Gustafsson J, Larsson H, Solheim HJ, Bostrom T. Mechanical stress tests on mc-Si wafers with micro-cracks. In: Proceedings of the 23rd European photovoltaic solar energy conference. Valencia; 2008. p. 1e4.

[32] Nishioka Kensuke, Yagi Toshiki, Uraoka Yukiharu, Fuyuki Takashi. Effect of hydrogen plasma treatment on grain boundaries in polycrystalline silicon solar cell evaluated by laser-beam-induced current. Sol Energy Mater Sol Cell 2007;91(1):1e5. ISSN 0927-0248.

[33] Leamy HJ. Charge collection scanning electron microscopy. J Appl Phys 1982;53:R51e80.

[34] Li WC, Tsai DM. Automatic saw-mark detection in multicrystalline solar wafer images. Sol Energy Mater Sol Cell 2011;95:2206e10.

[35] Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Mach Intell 1994;16:641e7.

[36] Mehnert A, Jackway P. An improved seeded region growing algorithm. Pattern Recogn Lett 1997;18:1065e71. MEMC, June 2011, http://www.memc.com/index.php?view¼SolarManufacturing.

[37] Mazer JA. Solar cell: an introduction to crystalline photovoltaic technology. Boston: Kluwer Academic; 1996.

[38] Moscheni F, Bhattacharjee S, Kunt M. Spatiotemporal segmentation based on region merging. IEEE Trans Pattern Anal Mach Intell 1998;20:897e915.

[39] Nixon M. Automatic shape analysis of crystal glasses. Trans Inst Meas Control 1989;11:63e9.

[40] Otsu N. A threshold selection method from gray level histograms. IEEE Trans Syst Man Cybern 1979;9:62e6.

[41] Qingli L, Weisheng W, Chao M, Ziqiang Z. Detection of physical defects in solar cell by hyperspectral imaging technology. Opt Laser Technol 2010;42:1010e3.

[42] Trupke T, Bardos RA, Schubert MC, Warta W. Photoluminescence imaging of silicon wafers. Appl Phys Lett 2006; 89:0441071-

Share

COinS