Al-Bahir Journal for Engineering and Pure Sciences
Abstract
. In this paper, Rad-⊕-supplemented semimodules are defined as generalization of ⊕-supplemented semimodules. Let R be a semiring. An R-semimodule A is called a Rad-⊕-supplemented semimodule, if each subsemimodule of A has a Rad-supplement which is a direct summand of A. Here, we investigate some properties of these semimodules and generalize some results on Rad-⊕-supplemented modules to semimodules. We prove that any finite direct sum of Rad-⊕-supplemented semimodules is Rad-⊕-supplemented. Also, we prove that if A is a subtractive semimodule with (D3) then A is Rad-⊕-supplemented if and only if every direct summand to A is Rad-⊕-supplemented.
Recommended Citation
Alwan, Ahmed H.
(2024)
"Rad-⊕-Supplemented Semimodules over Semirings,"
Al-Bahir Journal for Engineering and Pure Sciences: Vol. 4:
Iss.
2, Article 3.
Available at: https://doi.org/10.55810/2313-0083.1057
References
[1] Alwan AH. ⨁-supplemented semimodules. Al-Bahir Journal for Engineering and Pure Sciences 2023;4(1):1e5. https:// doi.org/10.55810/2313-0083.1044.
[2] Alwan AH, Alhossaini AM. Dedekind multiplication semimodules. Iraqi J Sci 2020;61(6):1488e97. https://doi.org/ 10.24996/ijs.2020.61.6.29.
[3] Khareeba H Sh, Alwan AH. Generalized supplemented semimodules. Journal of Electronics, Computer Networking and Applied Mathematics 2023;3(5):28e35. https://doi.org/ 10.55529/jecnam.35.28.35.
[4] Ҫalõs¸õci H, Türkmen E. Generalized ⨁-supplemented modules. Algebra Discrete Math 2010;10:10e8. https:// admjournal.luguniv.edu.ua/index.php/adm/article/view/647.
[5] Ghalandarzadeh S, Nasehpour PS, Razavi R. Invertible ideals and Gaussian semirings. Arch Math Brno 2017;53(3):179e92. https://www.emis.de/journals/AM/17-3/am2736.pdf. AL-BAHIR JOURNAL FOR ENGINEERING AND PURE SCIENCES 2024;4:97e102 101
[6] Golan JS. Semirings and Their applications. Dordrecht: Kluwer Academic Publishers; 1999. https://link.springer. com/book/10.1007/978-94-015-9333-5.
[7] Harmanci A, Keskin D, Smith PF. On ⨁-supplemented modules. Acta Math Hungar 1999;83(1e2):161e9. https:// doi.org/10.1023/A:1006627906283.
[8] Mohamed S, Mller BJ. Continuous and discrete modules. Cambridge University Press; 1990. https://doi.org/10.1017/ CBO9780511600692.
[9] Sharif ZR, Alwan AH. d-lifting and d-supplemented semimodules. J Optoelectron Laser 2022;41(8):164e71. http:// gdzjg.org/index.php/JOL/article/view/894.
[10] Sharif ZR, Alwan AH. d-semiperfect semirings and d-lifting semimodules. J Optoelectron - Laser 2022;41:172e7.
[11] Tuyen NX, Thang HX. On superfluous subsemimodules. Georgian Math J 2003;10(4):763e70. https://doi.org/10.1515/ GMJ.2003.763.
[12] Wang Y, Ding N. Generalized supplemented modules. Taiwan J Math 2006;10(6):1589e601. https://www.jstor.org/ stable/43833760.
[13] Wisbauer R. Foundations of Module and ring theory. Reading: Gordon & Breach; 1991.
[14] Zoschinger H. Komplementierte Moduln über Dedekin- € dringen. J Algebra 1974;29:42e56. https://doi.org/10.1016/ 0021-8693(74)90109-4.
[15] Alwan AH, Sharif ZR. Ss-supplemented semimodules. J Interdiscipl Math 2023;26(5):881e8. https://doi.org/10.479 74/JIM-1524
Indexed in: