Al-Bahir Journal for Engineering and Pure Sciences


Kigelia africana plant is multipurpose plant whose therapeutic potential has been thoroughly investigated. The physicochemical, solubilities, ADMET, pharmacological, and drug-like properties of this plant have not been reported in details. This study makes use of the information that is currently known on the chemical make-up of the plant to forecast its overall toxicity as well as the potential for the phytochemicals it contains to be employed in medication discovery. The study also employed free web servers for the lipophilicity, water solubility, drug-likness, bioavailability score, medicinal chemistry and toxicological profiling of the compounds of K. africana. Artemether, a known antimalaria drug was used to validate the potentials of the phytochemicals to serve as precursor to valuable drugs. Findings from our study revealed that a larger percentage of these compounds passed the physicochemical properties analysis, low lipophilicities, high-water solubilities, obeyed the drug-likeness rules, had high gastrointestinal absorption, high blood-barrier permeant, low permeability glycoprotein and hence bioavailable. The toxicological profile additionally showed that majority of the compounds possessed low toxicities and thus can be a potential drug candidate in the drug development industry. The profile of the well-known artemether supported the study's findings that a higher proportion of the K. africana compounds have potential drug-like molecules.


[1] Umeta Chali B, Melaku T, Berhanu N, Mengistu B, Milkessa G, Mamo G, Alemu S, Mulugeta T. Traditional medicine practice in the context of COVID-19 pandemic: community claim in jimma zone, oromia, Ethiopia. Infect Drug Resist 2021:3773e83. https://doi.org/10.2147/IDR.S331434.

[2] Pan S-Y, Litscher G, Gao S-H, Zhou S-F, Yu Z-L, Chen H-Q, Zhang S-F, Tang MK, Sun JN, Ko KM. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evidencebased Compl Altern Med 2014. https://doi.org/10.1155/2014/ 525340. 2014.

[3] Gabriel OA, Olubunmi A. Comprehensive scientific demystification of Kigelia africana: A review. Afr J Pure Appl Chem 2009;3(9):158e64. https://doi.org/10.5897/AJPAC.9000044.

[4] Atolani O, Olatunji GA, Fabiyi OA, Adeniji AJ, andOgbole OO. Phytochemicals from Kigelia pinnata leaves show antioxidant and anticancer potential on human cancer cell line. J Med Food 2013;16(10):878e85. https://doi.org/ 10.1089/jmf.2012.0249.

[5] Atawodi SEO, Olowoniyi OD. Pharmacological and therapeutic activities of Kigelia africana (Lam.) Benth. Ann Res Rev Biol 2015:1e17. https://doi.org/10.9734/ARRB/2015/8632.

[6] Olawale F, Olofinsan K, Ogunyemi OM, Karigidi KO, Gyebi GA, Ibrahim IM, Iwaloye O. Deciphering the therapeutic role of Kigelia africana fruit in erectile dysfunction through metabolite profiling and molecular modelling. Inform Med Unlocked 2023;37:101190. https://doi.org/ 10.1016/j.imu.2023.101190.

[7] Saini S, Kaur H, Verma B, Singh S. Kigelia africana (Lam.) Benth.dan overview. 2009. http://nopr.niscpr.res.in/handle/ 123456789/4043.

[8] Ranjith D, Ravikumar C. SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Ipomoea mauritiana Jacq. J Pharmacogn Phytochem 2019;8(5):2063e73.

[9] Olaleye MT, Rocha BJ. Acetaminophen-induced liver damage in mice: effects of some medicinal plants on the oxidative defense system. Exp Toxicol Pathol 2008;59(5):319e27. https://doi.org/10.1016/j.etp.2007.10.003.

[10] Weiss CR, Moideen SV, Croft SL, andHoughton PJ. Activity of extracts and isolated naphthoquinones from Kigelia pinnata against Plasmodium falciparum. J Nat Prod 2000;63(9): 1306e9. https://doi.org/10.1021/np000029g.

[11] Owolabi OJ, Omogbai EK, Obasuyi O. Antifungal and antibacterial activities of the ethanolic and aqueous extract of Kigelia africana (Bignoniaceae) stem bark. Afr J Biotechnol 2007;6(14). https://doi.org/10.5897/AJB2007.000-2244.

[12] Olubunmi A, Gabriel OA, Stephen AO, Scott FO. Antioxidant and antimicrobial activity of cuticular wax from Kigelia africana. Fabad J Pharm Sci 2009;34(4):187.

[13] Azu OO. The sausage plant (Kigelia africana): Have we finally discovered a male sperm booster. J Med Plants Res 2013;7(15):903e10. https://doi.org/10.5897/JMPR12.0746.

[14] Idowu A, Popoola O, Alani J, Ipadeola A, andNwekoyo V. Toxicity effect of Kigelia africana aqueous extract on the haematology and histopathology of juvenile Nile Tilapia (Oreochromis niloticus). Agro-Science 2020;19(1):37e42. https://doi.org/10.4314/as.v19i1.6.

[15] Hussain T, Fatima I, Rafay M, Shabir S, Akram M, andBano S. Evaluation of antibacterial and antioxidant activity of leaves, fruit and bark of Kigelia africana. Pakistan J Bot 2016;48(1):277e83.

[16] Falode JA, Akinmoladun AC, Olaleye MT. Ameliorative property of Kigelia africana crude and flavonoid leaf extracts on aluminum-induced hepatotoxicity in albino rats. Comp Clin Pathol 2019;28:1495e506. https://doi.org/10.1007/s00580- 019-03004-y.

[17] Deore AB, Dhumane JR, Wagh R, Sonawane R. The stages of drug discovery and development process. Asian J Pharmaceut Res Dev 2019;7(6):62e7. https://doi.org/10.22270/ ajprd.v7i6.616.

[18] Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Computational methods in drug discovery. Pharmacol Rev 2014;66(1): 334e95. https://doi.org/10.1124/pr.112.007336.

[19] Ndombera F, Maiyoh G, Tuei V. Pharmacokinetic, physicochemical and medicinal properties of n-glycoside anti-cancer agent more potent than 2-deoxy-d-glucose in lung cancer cells. 2019. 632.

[20] Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol 2014;32(1):40e51. https:// doi.org/10.1038/nbt.2786.

[21] Satpathy R, andAcharya S. Development of a database of RNA helicase inhibitors (VHIMDB) of pathogenic viruses and in silico screening for the potential drug molecules. EuroBiotech J 2022;6(3):116e25. https://doi.org/10.2478/ebtj-2022-0012.

[22] Sachana R, Chauhanb N, Omarc BJ, andAgrawald S. Therapeutic uses of Kigelia pinnata. Int J Med Plants (Photon) 2013;(105):163e73.

[23] Blomme EA, Will Y. Toxicology strategies for drug discovery: present and future. Chem Res Toxicol 2016;29(4):473e504. https://doi.org/10.1021/acs.chemrestox.5b00407.

[24] Lipinski CA, Lombardo F, Dominy BW, andFeeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997;23(1e3):3e25. https://doi.org/10.1016/S0169-409X(96)00423-1.

[25] Hughes JD, Blagg J, Price DA, Bailey S, DeCrescenzo GA, Devraj RV, Ellsworth E, Fobian YM, Gibbs ME, Gilles RW. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 2008;18(17): 4872e5. https://doi.org/10.1016/j.bmcl.2008.07.071.

[26] Chauhan PN, Sharma A, Rasheed H, Mathur H, Sharma P. Treatment Opportunities and Technological Progress Prospective for Acne Vulgaris. Curr Drug Deliv 2022;20(8):1037e48. https://doi.org/10.2174/15672018196662 20623154225.

[27] Ottaviani G, Gosling DJ, Patissier C, Rodde S, Zhou L, andFaller B. What is modulating solubility in simulated intestinal fluids? Eur J Pharmaceut Sci 2010;41(3e4):452e7. https://doi.org/10.1016/j.ejps.2010.07.012.

[28] Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017;7(1): 42717. https://doi.org/10.1038/srep42717.

[29] Lawal M, Olotu FA, Soliman ME. Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer's disease using bioinformatics and computational tools. Comput Biol Med 2018;98:168e77. https://doi.org/ 10.1016/j.compbiomed.2018.05.012.

[30] Stillhart C, Vucicevic K, Augustijns P, Basit AW, Batchelor H, Flanagan TR, Gesquiere I, Greupink R, Keszthelyi D, andKoskinen M. Impact of gastrointestinal physiology on drug absorption in special populationseeAn UNGAP review. Eur J Pharmaceut Sci 2020;147:105280. https://doi.org/ 10.1016/j.ejps.2020.105280.

[31] Alagga AA, Gupta V. Drug absorption StatPearls. StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/ NBK557405/.

[32] Mahmud S, Paul GK, Biswas S, Kazi T, Mahbub S, Mita MA, Afrose S, Islam A, Ahaduzzaman S, Hasan MR. Phytochemdb: a platform for virtual screening and computeraided drug designing. Database 2022. https://doi.org/ 10.1093/database/baac002. 2022, baac002.

[33] Belal A. Drug likeness, targets, molecular docking and ADMET studies for some indolizine derivatives. Die Pharmazie-An Int J Pharmaceut Sci 2018;73(11):635e42. https://doi.org/10.1691/ph.2018.8061.

[34] Lin JH, andYamazaki M. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 2003;42: 59e98. https://doi.org/10.2165/00003088-200342010-00003.

[35] Putra PP, Abdullah SS, Rahmatunisa R, Junaidin J, Ismed F. Structure, activity, and drug-likeness of pure compounds of Sumatran lichen (Stereocaulon halei) for the targeted ACE2 protein in COVID-19 disease. Pharmaciana 2020;10(1):135. https://doi.org/10.12928/pharmaciana.v10i2.16877.

[36] Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledgebased approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Combin Chem 1999;1(1):55e68. https://doi.org/10.1021/ cc9800071.

[37] Słoczynska K, Powro znik B, Pękala E, andWaszkielewicz AM. Antimutagenic compounds and their possible mechanisms of action. J Appl Genet 2014;55:273e85. https://doi.org/ 10.1007/s13353-014-0198-9.

[38] Bhattacharya S. Consumer attitude towards green marketing in India. IUP J Mark Manag 2011;10(4):62e70.

[39] Tian B, Wu N, Pan X, Yan C, Sharma VK, Qu R. Ferrate (VI) oxidation of bisphenol EeKinetics, removal performance, and dihydroxylation mechanism. Water Res 2022;210:118025. https://doi.org/10.1016/j.watres.2021.118025.