Al-Bahir Journal for Engineering and Pure Sciences
Abstract
In this paper, ⊕-Supplemented Semimodules are defined as generalizations of ⊕-Supplemented modules. Let S be a semiring. An S-semimodule A is named a ⊕-supplemented semimodule, if every subsemimodule of A has a supplement which is a direct summand of A. In this paper, we investigate some properties of ⊕-supplemented semimodules besides generalize certain results on ⊕-supplemented modules to semimodules.
Recommended Citation
Alwan, Ahmed H.
(2024)
"⊕-Supplemented Semimodules,"
Al-Bahir Journal for Engineering and Pure Sciences: Vol. 4:
Iss.
1, Article 1.
Available at: https://doi.org/10.55810/2313-0083.1044
References
[1] Alhashemi S., Alhossaini A. M., Extending semimodules over semirings, J. Phys.: Conf. Ser. 1818(2021), 012074. doi:10.1088/1742-6596/1818/1/012074
[2] Alwan A. H., Generalizations of Supplemented and Lifting Semimodules, Iraqi Journal of Science to appear.
[3] Alwan A. H., Sharif Z. R., ss-Supplemented semimodules, J. Interdiscip. Math. to appear.
[4] Alwan A. H., Alhossaini A. M., Dedekind multiplication semimodules, Iraqi Journal of Science, 61(6), 2020, 1488-1497. https://doi.org/10.24996/ijs.2020.61.6.29
[5] Azumaya G., F-semiperfect modules, J. Algebra, Vol. 136, no. 1, 1991, 73-85. https://www.sciencedirect.com/journal/journal-of-algebra/vol/136/issue/1
[6] Ghalandarzadeh S., Nasehpour P., Razavi R., Invertible ideals and Gaussian semirings, Arch. Math. Brno, 53(3), 2017, 179-192. https://www.emis.de/journals/AM/17-3/am2736.pdf
[7] Golan J. S., Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, (1999). https://link.springer.com/book/10.1007/978-94-015-9333-5
[8] Harmancı A., Keskin D., Smith P. F., On ⨁-supplemented modules, Acta Math. Hungar. Vol. 83, no. 1-2, 1999, 161-169. https://doi.org/10.1023/A:1006627906283
[9] Idelhadj A., Tribak R., On some properties of ⨁-supplemented modules, Int. J. Math. Math. Sci., 69(2003), 4373-4387. https://doi.org/10.1155/S016117120320346X
[10] Mohamed S. and Müller B. J., Continuous and discrete modules, Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511600692
[11] Smith P. F., Modules for which every submodule has a unique closure, in Ring Theory (editors, S.K. Jain and S.T. Rizvi), World Sci. (Singapore, 1993), 302-313.
[12] Sharif Z. R., Alwan A. H., 𝛿-Lifting and 𝛿-supplemented semimodules, Journal of Optoelectronics Laser, 41(8), 2022, 164-171. http://gdzjg.org/index.php/JOL/article/view/894
[13] Sharif Z. R., Alwan A. H., 𝛿-Semiperfect and 𝛿-lifting semimodules, Journal of Optoelectronics Laser, 41(8), 2022, 172-177. http://gdzjg.org/index.php/JOL/article/view/895
[14] Tuyen N. X., Thang H. X., On superfluous subsemimodules, Georgian Math J., 10(4), (2003), 763-770. https://doi.org/10.1515/GMJ.2003.763
[15] Zelmanowitz J. M., A class of modules with semisimple behavior, Abelian Groups and Modules, Kluwer Acad. Publ., 1995, 491-500. https://link.springer.com/chapter/10.1007/978-94-011-0443-2_40
[16] Zöschinger H., Komplementierte Moduln über Dedekindringen, J. Algebra, 29(1974), 42-56. https://doi.org/10.1016/0021-8693(74)90109-4
Indexed in: