•  
  •  
 

Al-Bahir Journal for Engineering and Pure Sciences

Abstract

Microextraction technique (e.g., solid phase microextraction, thin film microextraction, in-tube extraction) brings a revolutionary change in air sampling techniques over the recent few years. This advanced technique exhibits a high pollutant extraction rate, a low retention time, and a lower error margin compared to conventional air sampling techniques. The accuracy range of microextraction technique (MET) was recorded ~90-95% to isolate the volatile organic components, oxygenated and halogenated carbon particles from the air. However, the efficiency of MET increases additional >3-5% when employed by coupled with gas chromatography or gas chromatography-mass spectrometry. The conventional sampling techniques (e.g., bag sampling, grab sampling) on the other hand, displayed the accuracy of ~75- 80% which is ~20% lower than MET. The factors that potentially affect the performance of both conventional and MET were thoroughly investigated in this study. For instance, it was observed that the quality of needle coating used in MET significantly affects the pollutant trapping and at least ~5% of total performance cut off due to damaged and corroded coating. In addition, smart sensor-based air sampling techniques are also being investigated as this technique is a recent development in air quality monitoring. This fully automated state-of-the-art technology shows more than 98% accuracy with significantly high sensitivity and pollutant extraction rate. Finally, this investigation distinguishes the potential advantages, disadvantages, and challenges to increase accuracy between advanced and conventional sampling techniques, drawing attention to the urgent need to improve the performance of the air sampling techniques investigated in this study.

References

1) Adebajo, M. O.; Frost, R. L.; Kloprogge, J. T.; Carmody, O.; Kokot, S. Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. J. Porous Mater. 2003, 10 (3), 159–170. https://doi.org/10.1023/A:1027484117065.

(2) Kim, D.; Chen, Z.; Zhou, L.-F.; Huang, S.-X. Air Pollutants and Early Origins of Respiratory Diseases. Chronic Dis. Transl. Med. 2018, 4 (2), 75–94. https://doi.org/10.1016/j.cdtm.2018.03.003.

(3) Pegas, P. N.; Nunes, T.; Alves, C. A.; Silva, J. R.; Vieira, S. L. A.; Caseiro, A.; Pio, C. A. Indoor and Outdoor Characterisation of Organic and Inorganic Compounds in City Centre and Suburban Elementary Schools of Aveiro, Portugal. Atmos. Environ. 2012, 55, 80–89. https://doi.org/10.1016/j.atmosenv.2012.03.059.

(4) Wolkoff, P.; Nielsen, G. D. Organic Compounds in Indoor Air F Their Relevance for Perceived Indoor Air Quality ? $. 2001, 35, 4407–4417.

(5) Clark, I. Sampling and Analysis. Groundw. Geochemistry Isot. 2015, 399–420. https://doi.org/10.1201/b18347-12.

(6) Chakraborty, S. C.; Qamruzzaman, M.; Zaman, M. W. U.; Alam, M. M.; Hossain, D.; Pramanik, B. K.; Nguyen, L. N.; Nghiem, L. D.; Ahmed, M. F.; Zhou, J. L.; Mondal, M. I. H.; Hossain, M. A.; Johir, M. A. H.; Ahmed, M. B.; Sithi, J. A.; Zargar, M.; Moni, M. A. Metals in E-Waste: Occurrence, Fate, Impacts and Remediation Technologies. Process Saf. Environ. Prot. 2022. https://doi.org/10.1016/J.PSEP.2022.04.011.

(7) Hossain, M. R.; Khatun, A. A.; Ahmed, M. F.; Faroque, M. O.; Sobahan, M. A. Experimental Behavior of Bituminous Mixes with Waste Concrete Aggregate Experimental Behavior of Bituminous Mixes with Waste Concrete Aggregate. 2020, 9 (3), 31–50.

(8) Villanueva, F.; Ródenas, M.; Ruus, A.; Saffell, J.; Marta, F.; Villanueva, F.; Ródenas, M.; Ruus, A.; Saffell, J.; Marta, F. Sampling and Analysis Techniques for Inorganic Air Pollutants in Indoor Air. Appl. Spectrosc. Rev. 2021, 0 (0), 1–49. https://doi.org/10.1080/05704928.2021.2020807.

(9) Fent, K. W.; Evans, D. E.; Babik, K.; Striley, C.; Bertke, S.; Kerber, S.; Smith, D.; Horn, G. P. Airborne Contaminants during Controlled Residential Fires. J. Occup. Environ. Hyg. 2018, 15 (5), 399–412. https://doi.org/10.1080/15459624.2018.1445260.

(10) Palliyarayil, A.; Saini, H.; Vinayakumar, K.; Selvarajan, P.; Vinu, A.; Kumar, N. S.; Sil, S. Advances in Porous Material Research towards the Management of Air Pollution; Emergent Materials, 2021; Vol. 4. https://doi.org/10.1007/s42247-020-00151-9.

(11) Duflo, E.; Greenstone, M.; Hanna, R. Indoor Air Pollution, Health and Economic Well-Being. Sapiens 2008, 1 (1), 7–16. https://doi.org/10.5194/sapiens-1-1-2008.

(12) Sierra-Vargas, M. P.; Teran, L. M. Air Pollution: Impact and Prevention. Respirology 2012, 17 (7), 1031–1038. https://doi.org/10.1111/j.1440-1843.2012.02213.x.

(13) Sandle, T. Settle Plate Exposure under Unidirectional Airflow and the Effect of Weight Loss upon Microbial Growth. Eur. J. Parenter. Pharm. Sci. 2015, 20 (2), 45–50.

(14) Jochmann, M. A.; Yuan, X.; Schilling, B.; Schmidt, T. C. In-Tube Extraction for Enrichment of Volatile Organic Hydrocarbons from Aqueous Samples. 2008, 1179, 96–105. https://doi.org/10.1016/j.chroma.2007.11.100.

(15) Lan, H.; Hartonen, K.; Riekkola, M. L. Miniaturised Air Sampling Techniques for Analysis of Volatile Organic Compounds in Air. TrAC - Trends Anal. Chem. 2020, 126, 115873. https://doi.org/10.1016/j.trac.2020.115873.

(16) Mirnaghi, F. S.; Hein, D.; Pawliszyn, J. Thin-Film Microextraction Coupled with Mass Spectrometry and Liquid Chromatography-Mass Spectrometry. Chromatographia 2013, 76 (19–20), 1215–1223. https://doi.org/10.1007/s10337-013-2443-5.

(17) Saraji, M.; Farajmand, B. Chemically Modified Cellulose Paper as a Thin Film Microextraction Phase. J. Chromatogr. A 2013, 1314, 24–30. https://doi.org/10.1016/j.chroma.2013.09.018.

(18) Austin, J. C.; Shaw, R.; Moyes, D.; Cleaton-jones, P. E. A Simple Air Sampling Technique for Monitoring Nitrous Oxide Pollution. Br. J. Anaesth. 1981, 53 (9), 997–1003. https://doi.org/10.1093/bja/53.9.997.

(19) Muralikrishna, I. V.; Manickam, V. Analytical Methods for Monitoring Environmental Pollution; 2017. https://doi.org/10.1016/b978-0-12-811989-1.00018-x.

(20) Trefz, P.; Rösner, L.; Hein, D. Evaluation of Needle Trap Micro-Extraction and Automatic Alveolar Sampling for Point-of-Care Breath Analysis. 2013, 3105–3115. https://doi.org/10.1007/s00216-013-6781-9.

(21) Jaschhof, H. Collection Using a Membrane Filter at a High Air Sampling Rate. 1992, No. 6.

(22) Brown, S. K.; Sim, M. R.; Abramson, M. J.; Gray, C. N. Concentrations of Volatile Organic Compounds in Indoor Air – A Review. Indoor Air 1994, 4 (2), 123–134. https://doi.org/10.1111/j.1600-0668.1994.t01-2-00007.x.

(23) David, F.; Sandra, P. Stir Bar Sorptive Extraction for Trace Analysis. 2007, 1152, 54–69. https://doi.org/10.1016/j.chroma.2007.01.032.

(24) Valentina, Y.; Umadevi, S. Phenotypic Detection and Quality Assessment of Indoor Air-Borne Microorganisms Using Passive Air Sampling Technique (Settle Plate) at a Tertiary Care Teaching Hospital in Puducherry. J. Pure Appl. Microbiol. 2019, 13 (1), 241–245. https://doi.org/10.22207/JPAM.13.1.25.

(25) de Azevedo, A. R. G.; Marvila, M. T.; Ali, M.; Khan, M. I.; Masood, F.; Vieira, C. M. F. Effect of the Addition and Processing of Glass Polishing Waste on the Durability of Geopolymeric Mortars. Case Stud. Constr. Mater. 2021, 15 (July), e00662. https://doi.org/10.1016/j.cscm.2021.e00662.

(26) Dos Santos Barreto, E.; Vaz Stafanato, K.; Marvila, M. T.; Garcez De Azevedo, A. R.; Ali, M.; Lobo Pereira, R. M.; Monteiro, S. N. Clay Ceramic Waste as Pozzolan Constituent in Cement for Structural Concrete. Materials (Basel). 2021, 14 (11). https://doi.org/10.3390/ma14112917.

(27) Middlebrook, A. M.; Murphy, D. M.; Ahmadov, R.; Atlas, E. L.; Bahreini, R.; Blake, D. R.; Brioude, J.; De Gouw, J. A.; Fehsenfeld, F. C.; Frost, G. J.; Holloway, J. S.; Lack, D. A.; Langridge, J. M.; Lueb, R. A.; McKeen, S. A.; Meagher, J. F.; Meinardi, S.; Neuman, J. A.; Nowak, J. B.; Parrish, D. D.; Peischl, J.; Perring, A. E.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Schwarz, J. P.; Spackman, J. R.; Warneke, C.; Ravishankara, A. R. Air Quality Implications of the Deepwater Horizon Oil Spill. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (50), 20280–20285. https://doi.org/10.1073/PNAS.1110052108/SUPPL_FILE/PNAS.1110052108_SI.PDF.

(28) Ahmed, F.; Hutton-prager, B. Influence of Bulk and Surface Interactions from Thick , Porous , Soil-Based Substrates on the Spreading Behavior of Different Viscosity Oils. Environ. Challenges 2021, 3 (November 2020), 100045. https://doi.org/10.1016/j.envc.2021.100045.

(29) Feck, A. Air pollution: A global health threat. https://www.statista.com/chart/29507/pm25-concentrations-of-selected-cities/ (accessed 2023-08-08).

(30) Mazaheri, M.; Johnson, G. R.; Morawska, L. Application of Bag Sampling Technique for Particle Size Distribution Measurements. J. Environ. Monit. 2009, 11 (11), 2087–2090. https://doi.org/10.1039/b907891f.

(31) Jochmann, M. A.; Kmiecik, M. P.; Schmidt, T. C. Solid-Phase Dynamic Extraction for the Enrichment of Polar Volatile Organic Compounds from Water. 2006, 1115, 208–216. https://doi.org/10.1016/j.chroma.2006.02.061.

(32) Trefz, P.; Kischkel, S.; Hein, D.; Sean, E.; Schubert, J. K.; Miekisch, W. Needle Trap Micro-Extraction for VOC Analysis : Effects of Packing Materials and Desorption Parameters. 2012, 1219, 29–38. https://doi.org/10.1016/j.chroma.2011.10.077.

(33) Gizaw, Z.; Gebrehiwot, M.; Yenew, C. High Bacterial Load of Indoor Air in Hospital Wards: The Case of University of Gondar Teaching Hospital, Northwest Ethiopia. Multidiscip. Respir. Med. 2016, 11 (1), 1–7. https://doi.org/10.1186/s40248-016-0061-4.

(34) Asefa, D. T.; Langsrud, S.; Gjerde, R. O.; Kure, C. F.; Sidhu, M. S.; Nesbakken, T.; Skaar, I. The Performance of SAS-Super-180 Air Sampler and Settle Plates for Assessing Viable Fungal Particles in the Air of Dry-Cured Meat Production Facility. Food Control 2009, 20 (11), 997–1001. https://doi.org/10.1016/j.foodcont.2008.11.011.

(35) Bohlin, P.; Jones, K. C.; Strandberg, B. Occupational and Indoor Air Exposure to Persistent Organic Pollutants: A Review of Passive Sampling Techniques and Needs. J. Environ. Monit. 2007, 9 (6), 501–509. https://doi.org/10.1039/b700627f.

(36) Zabiegała, B.; Górecki, T.; Przyk, E.; Namieśnik, J. Permeation Passive Sampling as a Tool for the Evaluation of Indoor Air Quality. Atmos. Environ. 2002, 36 (17), 2907–2916. https://doi.org/10.1016/S1352-2310(02)00168-1.

(37) Napoli, C.; Marcotrigiano, V.; Montagna, M. T. Air Sampling Procedures to Evaluate Microbial Contamination: A Comparison between Active and Passive Methods in Operating Theatres. BMC Public Health 2012, 12 (1), 1. https://doi.org/10.1186/1471-2458-12-594.

(38) Barrows, A. P. W.; Neumann, C. A.; Berger, L.; Shaw, S. D. Analytical Methods. Anal. Methods 2017, 9, 1446–1453. https://doi.org/10.1039/C6AY02387H.

(39) Edinburgsensors. Carbon Dioxide Monitor | Gas Detector | CO CO2 CH4 | Price. Gascard NG. https://edinburghsensors.com/products/oem/gascard-ng/ (accessed 2022-07-01).

(40) Watson, N.; Davies, S.; Wevill, D. Air Monitoring: New Advances in Sampling and Detection. ScientificWorldJournal. 2011, 11, 2582–2598. https://doi.org/10.1100/2011/430616.

(41) Weng, P.-S.; Chen, C.-J.; Chu, T.-C.; Lin, Y.-M. On the Accuracy of Grab-Sampling Methods for Radon Daughters. Radiat. Prot. Dosimetry 1992, 45 (1–4), 523–526. https://doi.org/10.1093/RPD/45.1-4.523.

(42) Smith, B. S.; Pierce, J. O. The Use of Plastic Bags for Industrial Air Sampling. 2010, 8894 (1970). https://doi.org/10.1080/0002889708506254.

(43) Schulz, K.; Jensen, M. L.; Balsley, B. B.; Davis, K.; Birks, J. W. Tedlar Bag Sampling Technique for Vertical Profiling of Carbon Dioxide through the Atmospheric Boundary Layer with High Precision and Accuracy. Environ. Sci. Technol. 2004, 38 (13), 3683–3688. https://doi.org/10.1021/es035046h.

(44) Dara S. S.; Mishra D. D. A TEXTBOOK OF ENVIRONMENTAL CHEMISTRY AND POLLUTION CONTROL, 9th ed.; Dara S. S., Mishara D. D., Eds.; S. Chand & Company Ltd.: New Delhi, 2011.

(45) Woellner, M.; Hausdorf, S.; Klein, N.; Mueller, P.; Smith, M. W.; Kaskel, S. Adsorption and Detection of Hazardous Trace Gases by Metal–Organic Frameworks. Adv. Mater. 2018, 30 (37). https://doi.org/10.1002/ADMA.201704679.

(46) Sampling and Analysis of Gases and Vapours [Air Monitoring Methods, 2009]. MAK-Collection Occup. Heal. Saf. 2012, 11, 14–47. https://doi.org/10.1002/3527600418.AMSAMPGASE0011.

(47) Dodson, R. E.; Bessonneau, V.; Udesky, J. O.; Nishioka, M.; McCauley, M.; Rudel, R. A. Passive Indoor Air Sampling for Consumer Product Chemicals: A Field Evaluation Study. J. Expo. Sci. Environ. Epidemiol. 2018 291 2018, 29 (1), 95–108. https://doi.org/10.1038/s41370-018-0070-9.

(48) Valenzuela, E. F.; Menezes, H. C.; Cardeal, Z. L. Passive and Grab Sampling Methods to Assess Pesticide Residues in Water. A Review. Environ. Chem. Lett. 2020 184 2020, 18 (4), 1019–1048. https://doi.org/10.1007/S10311-020-00998-8.

(49) Anon. Air Sampling Basics. Natl Saf News 1978, 118 (2), 57–59.

(50) Harrison, R. M.; Perry, R.; Slater, D. H. An Adsorption Technique for the Determination of Organic Lead in Street Air. Atmos. Environ. 1974, 8 (11), 1187–1194. https://doi.org/10.1016/0004-6981(74)90052-3.

(51) Raza, N.; Hashemi, B.; Kim, K. H.; Lee, S. H.; Deep, A. Aromatic Hydrocarbons in Air, Water, and Soil: Sampling and Pretreatment Techniques. TrAC - Trends Anal. Chem. 2018, 103, 56–73. https://doi.org/10.1016/j.trac.2018.03.012.

(52) Kumar, A.; Víden, I. Volatile Organic Compounds: Sampling Methods and Their Worldwide Profile in Ambient Air. Environ. Monit. Assess. 2007, 131 (1–3), 301–321. https://doi.org/10.1007/s10661-006-9477-1.

(53) Oertel, P.; Bergmann, A.; Fischer, S.; Trefz, P.; Küntzel, A.; Reinhold, P.; Köhler, H.; Schubert, J. K.; Miekisch, W. Evaluation of Needle Trap Micro-Extraction and Solid-Phase Micro-Extraction: Obtaining Comprehensive Information on Volatile Emissions from in Vitro Cultures. Biomed. Chromatogr. 2018, 32 (10). https://doi.org/10.1002/bmc.4285.

(54) Yang, X.; Peppard, T. Solid-Phase Microextraction for Flavor Analysis. 1994, 1925–1930.

(55) Spietelun, A.; Pilarczyk, M.; Namies, J. Current Trends in Solid-Phase Microextraction ( SPME ) Fibre Coatings. 2010, 4524–4537. https://doi.org/10.1039/c003335a.

(56) Lord, H.; Pawliszyn, J. Evolution of Solid-Phase Microextraction Technology; 2000; Vol. 885.

(57) Koziel, J. A.; Cai, L.; Wright, D. W.; Hoff, S. J.; Engineering, B.; Company, A. M.; Rock, R. Solid-Phase Microextraction as a Novel Air Sampling Technology for Improved , GC – Olfactometry-Based Assessment of Livestock Odors. 2006, 44 (August), 451–457.

(58) Koziel, J. A.; Noah, J.; Pawliszyn, J. Field Sampling and Determination of Formaldehyde in Indoor Air with Solid-Phase Microextraction and on-Fiber Derivatization. Environ. Sci. Technol. 2001, 35 (7), 1481–1486. https://doi.org/10.1021/es001653i.

(59) Dugheri, S.; Mucci, N.; Bonari, A.; Marrubini, G.; Cappelli, G.; Ubiali, D.; Campagna, M.; Montalti, M.; Arcangeli, G. Solid Phase Microextraction Techniques Used for Gas Chromatography: A Review. Acta Chromatogr. 2020, 32 (1), 1–9. https://doi.org/10.1556/1326.2018.00579.

(60) Koziel, J.; Jia, M.; Pawliszyn, J. Air Sampling with Porous Solid-Phase Microextraction Fibers. Anal. Chem. 2000, 72 (21), 5178–5186. https://doi.org/10.1021/ac000518l.

(61) Castro, L. F.; Ross, C. F.; Vixie, K. R. Optimization of a Solid Phase Dynamic Extraction ( SPDE ) Method for Beer Volatile Profiling. 2015. https://doi.org/10.1007/s12161-015-0104-z.

(62) Zhao, Y.; Aarnink, A. J. A.; Wang, W.; Fabri, T.; Groot Koerkamp, P. W. G.; de Jong, M. C. M. Airborne Virus Sampling: Efficiencies of Samplers and Their Detection Limits for Infectious Bursal Disease Virus (IBDV). Ann. Agric. Environ. Med. 2014, 21 (3), 464–471. https://doi.org/10.5604/12321966.1120585.

(63) Amorim, L. C. A.; Carneiro, J. P.; Cardeal, Z. L. An Optimized Method for Determination of Benzene in Exhaled Air by Gas Chromatography-Mass Spectrometry Using Solid Phase Microextraction as a Sampling Technique. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 865 (1–2), 141–146. https://doi.org/10.1016/j.jchromb.2008.02.023.

(64) Bruheim, I.; Liu, X.; Pawliszyn, J. Thin-Film Microextraction. Anal. Chem. 2003, 75 (4), 1002–1010. https://doi.org/10.1021/AC026162Q.

(65) Jiang, R.; Pawliszyn, J. Thin-Film Microextraction Offers Another Geometry for Solid-Phase Microextraction. TrAC - Trends Anal. Chem. 2012, 39, 245–253. https://doi.org/10.1016/j.trac.2012.07.005.

(66) Malherbe, S.; Watts, V.; Nieuwoudt, H. H.; Bauer, F. F.; Toit, M. D. U. Analysis of Volatile Profiles of Fermenting Grape Must by Headspace Solid-Phase Dynamic Extraction Coupled with Gas Chromatography-Mass Spectrometry (HS-SPDE GC-MS): Novel Application to Investigate Problem Fermentations. J. Agric. Food Chem. 2009, 57 (12), 5161–5166. https://doi.org/10.1021/JF900532V/SUPPL_FILE/JF900532V_SI_001.PDF.

(67) Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir Bar Sorptive Extraction ( SBSE ) , a Novel Extraction Technique for Aqueous Samples : Theory and Principles. 1999, 737–747.

(68) Liu, Y.; Liu, Z.; Xu, Z.; Li, G. Stir Bar Sorptive Extraction Technology. Prog. Chem. 2020, 32 (9), 1334. https://doi.org/10.7536/PC200101.

(69) Berrou, K.; Dunyach-Remy, C.; Lavigne, J. P.; Roig, B.; Cadiere, A. Comparison of Stir Bar Sorptive Extraction and Solid Phase Microextraction of Volatile and Semi-Volatile Metabolite Profile of Staphylococcus Aureus. Molecules 2020, 25 (1). https://doi.org/10.3390/MOLECULES25010055.

(70) Laaks, J.; Jochmann, M. A.; Schilling, B.; Schmidt, T. C. Optimization Strategies of In-Tube Extraction (ITEX) Methods. 2015. https://doi.org/10.1007/s00216-015-8854-4.

(71) Wilcockson, J. B.; Gobas, F. A. P. C. Thin-Film Solid-Phase Extraction to Measure Fugacities of Organic Chemicals with Low Volatility in Biological Samples. Environ. Sci. Technol. 2001, 35 (7), 1425–1431. https://doi.org/10.1021/es001561t.

(72) Olcer, Y. A.; Tascon, M.; Eroglu, A. E.; Boyacı, E. Thin Film Microextraction: Towards Faster and More Sensitive Microextraction. TrAC - Trends Anal. Chem. 2019, 113, 93–101. https://doi.org/10.1016/j.trac.2019.01.022.

(73) Riazi Kermani, F.; Pawliszyn, J. Sorbent Coated Glass Wool Fabric as a Thin Film Microextraction Device. Anal. Chem. 2012, 84 (21), 8990–8995. https://doi.org/10.1021/ac301861z.

(74) Bicchi, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B. Automated Headspace Solid-Phase Dynamic Extraction to Analyse the Volatile Fraction of Food Matrices. 2004, 1024, 217–226. https://doi.org/10.1016/j.chroma.2003.10.009.

(75) Woolfenden, E. Sorbent-Based Sampling Methods for Volatile and Semi-Volatile Organic Compounds in Air. Part 1: Sorbent-Based Air Monitoring Options. J. Chromatogr. A 2010, 1217 (16), 2674–2684. https://doi.org/10.1016/j.chroma.2009.12.042.

(76) Shen, F.; Tan, M.; Wang, Z.; Yao, M.; Xu, Z.; Wu, Y.; Wang, J.; Guo, X.; Zhu, T. Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques for Real-Time Monitoring Biological Aerosols. Environ. Sci. Technol. 2011, 45 (17), 7473–7480. https://doi.org/10.1021/es1043547.

(77) Lan, H.; Holopainen, J.; Hartonen, K.; Jussila, M.; Ritala, M.; Riekkola, M. L. Fully Automated Online Dynamic In-Tube Extraction for Continuous Sampling of Volatile Organic Compounds in Air. Anal. Chem. 2019, 91 (13), 8507–8515. https://doi.org/10.1021/acs.analchem.9b01668.

(78) Laaks, J.; Jochmann, M. A.; Schilling, B.; Schmidt, T. C. Optimization Strategies of In-Tube Extraction (ITEX) Methods. Anal. Bioanal. Chem. 2015, 407 (22), 6827. https://doi.org/10.1007/S00216-015-8854-4.

(79) Lieberzeit, P. A.; Dickert, F. L. Sensor Technology and Its Application in Environmental Analysis. Anal. Bioanal. Chem. 2007, 387 (1), 237–247. https://doi.org/10.1007/s00216-006-0926-z.

(80) Chung, P. R.; Tzeng, C. T.; Ke, M. T.; Lee, C. Y. Formaldehyde Gas Sensors: A Review. Sensors (Switzerland) 2013, 13 (4), 4468–4484. https://doi.org/10.3390/s130404468.

(81) Schon, S.; Theodore, S. J.; Güntner, A. T. Versatile Breath Sampler for Online Gas Sensor Analysis. Sensors Actuators, B Chem. 2018, 273 (March), 1780–1785. https://doi.org/10.1016/j.snb.2018.07.094.

(82) Yang, Y.; Li, L. A Smart Sensor System for Air Quality Monitoring and Massive Data Collection. Int. Conf. ICT Converg. 2015 Innov. Towar. IoT, 5G, Smart Media Era, ICTC 2015 2015, 147–152. https://doi.org/10.1109/ICTC.2015.7354515.

Share

COinS