Al-Bahir Journal for Engineering and Pure Sciences


In this study, nickel oxide (NiO) nanoparticles were successfully synthesized by Syzygium aromaticum (clove) extract via a green synthesis method and evaluated their antibacterial properties. The bio-molecules inside the extract play an important role in converting nickel nitrate salt into nickel oxide nanoparticles. The prepared nickel oxide nanoparticles were characterized via different techniques such as X-ray Diffraction, fourier transform infrared spectroscopy, field emission-scanning electron microscopy and ultraviolet-visible spectrophotometer. From X-ray diffraction results, the crystallite size of NiO NPs was estimated to be (39.7 nm). The fourier transform infrared spectroscopy exhibits intense two peaks at 594 cm-1 and 469 cm-1 which indicates the formation of NiO NPs. In addition, the energy band-gap calculated by Tauc’s formula was ~ 2.89 eV. Finally, The antibacterial activity study results detected that NiO NPs have the highest activity against Staphylococcus aureus when compared to Escherichia coli. Thus, the present study exhibits good antibacterial activity, which may be explored in future clinical treatments.


  1. Mayedwa N, Mongwaketsi N, Khamlich S, Kaviyarasu K, Matinise N, Maaza M. Green synthesis of nickel oxide, palladium and palladium oxide synthesized via Aspalathus linearis natural extracts: physical properties & mechanism of formation. Appl Surf Sci 2018;446:266e72. https://doi.org/10.1016/j.apsusc.2018.03.246
  2. Imran Din M, Rani A. Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: a green adeptness. Int J Anal Chem 2016;2016. https://doi.org/10.1155/2016/9149362
  3. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Maaza M, Ayeshamariam A, Kennedy LJ. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobiol B Biol 2016;164:352e60. https://doi.org/10.1016/j.jphotobiol.2016.09.027
  4. Fomekong RL, et al. Effective reduction in the nanoparticle sizes of NiO obtained via the pyrolysis of nickel malonate precursor modified using oleylamine surfactant. J Solid State Chem 2016;241:137e42. https://doi.org/10.1016/j.jssc.2016.06.010
  5. Anand GT, Nithiyavathi R, Ramesh R, Sundaram SJ, Kaviyarasu K. Structural and optical properties of nickel oxide nanoparticles: investigation of antimicrobial applications. Surface Interfac 2020;18:100460. https://doi.org/10.1016/j.surfin.2019.100460
  6. Vasudeo K, Pramod K. Biosynthesis of nickel nanoparticles using leaf extract of coriander. Biotechnol Ind J 2016;12(11):1e6.
  7. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Ramalingam RJ, Al-Lohedan HA. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photochem Photobiol B Biol 2018;180:39e50. https://doi.org/10.1016/j.jphotobiol.2018.01.003
  8. Sasi B, Gopchandran KG, Manoj PK, Koshy P, Rao PP, Vaidyan VK. Preparation of transparent and semiconducting NiO films. Vacuum 2002;68(2):149e54.
  9. Hussein BY, Mohammed AM. Biosynthesis and characterization of nickel oxide nanoparticles by using aqueous grape extract and evaluation of their biological applications. Results Chem 2021;3:100142. https://doi.org/10.1016/j.rechem.2021.100142
  10. Hernández-Morales L, et al. Study of the green synthesis of silver nanoparticles using a natural extract of dark or white Salvia hispanica L. seeds and their antibacterial application. Appl Surf Sci 2019;489:952e61.https://doi.org/10.1016/j.apsusc.2019.06.310
  11. Khalil AT, et al. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol 2018;46(4):838e52.https://doi.org/10.1080/21691401.2017.1366412
  12. Thema FT, Beukes P, Gurib-Fakim A, Maaza M.Green synthesis of Monteponite CdO nanoparticles by Agathosma betulina natural extract. J Alloys Compd 2015;646:1043e8.https://doi.org/10.1016/j.jallcom.2015.05.156
  13. Lee H-J, Lee G, Jang NR, Yun JH, Song JY, Kim BS.Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 2011;1(1):371e4.https://doi.org/10.4172/2157-7439.S1-003
  14. Kar A, Ray AK.Synthesis of nano-spherical nickel by templating hibiscus flower petals. J Nanosci Nanotechnol 2014;2(2):17e20.https://doi.org/10.1166/jnnl_syntemplate_007
  15. Ajitha B, Reddy YAK, Lee Y, Kim MJ, Ahn CW.Biomimetic synthesis of silver nanoparticles using Syzygium aromaticum (clove) extract: catalytic and antimicrobial effects. Appl Organomet Chem 2019;33(5):e4867.https://doi.org/10.1002/aoc.e4867
  16. Vijaya Kumar P, Jafar Ahamed A, Karthikeyan M.Synthesis and characterization of NiO nanoparticles by chemical as well as green routes and their comparisons with respect to cytotoxic effect and toxicity studies in microbial and MCF-7 cancer cell models. SN Appl Sci 2019;1:1e15.https://doi.org/10.1007/s42452-019-0029-3
  17. Nawaz M, et al.Synthesis, characterization and antibacterial activity of NiO NPs against pathogen. Inorg Chem Commun 2020;122:108300.https://doi.org/10.1016/j.inoche.2020.e108300
  18. Helan V, et al.Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results Phys 2016;6:712e8.https://doi.org/10.1016/j.rinp.2016.09.005
  19. Ramasami AK, V Reddy M, Balakrishna GR.Combustion synthesis and characterization of NiO nanoparticles. Mater Sci Semicond Process 2015;40:194e202.https://doi.org/10.1016/j.mssp.2015.05.042
  20. Talebian N, Doudi M, Kheiri M.The anti-adherence and bactericidal activity of solegel derived nickel oxide nanostructure films: solvent effect. J Sol Gel Sci Technol 2014;69(1):172e82.https://doi.org/10.1007/s10971-013-3203-4
  21. Jassim SM, Bakr NA, Mustafa FI. Synthesis and characterization of MAPbI 3 thin film and its application in C-Si/ perovskite tandem solar cell. JMater Sci Mater Electron 2020;31:16199-207. https://doi.org/10.1007/s10854-020-03947-1
  22. Kayani ZN, Butt MZ, Riaz S, Naseem S. Synthesis of NiO nanoparticles by sol-gel technique. Mater Sci 2018;36(4):547-52. https://doi.org/10.1007/s12034-018-1513-7
  23. Jayakumar G, Irudayaraj AA, Raj AD. Photocatalytic degradation of methylene blue by nickel oxide nanoparticles. Mater Today Proc 2017;4(11):11690-5. https://doi.org/10.1016/j.matpr.2017.09.051
  24. Sharma AK, Desnavi S, Dixit C, Varshney U, Sharma A. Extraction of nickel nanoparticles from electroplating waste and their application in production of bio-diesel from biowaste. Int J Chem Eng Appl 2015;6(3):156. https://doi.org/10.7763/IJCEA.2015.V6.439
  25. Lefojane R, et al. Green synthesis of nickel oxide (NiO) nanoparticles using Spirostachys africana bark extract. Asian J Sci Res 2020;13:284-91. https://doi.org/10.3923/ajsr.2020.284.291
  26. Abed MA, Bakr NA, Mohammed SB. Synthesis and characterization of chemically sprayed Cu2FeSnS4 (CFTS) thin films: the effect of substrate temperature. Mater Sci Forum 2021;1039:434-41. https://doi.org/10.4028/www.scientific.net/MSF.1039.434
  27. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S. Multifunctional properties of microwave assisted CdOeNiOeZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities. J Mater Sci Mater Electron 2018;29:5459-71. https://doi.org/10.1007/s10854-018-8987-y
  28. Bhat SA, et al. Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles. J Iran Chem Soc 2020;17:215-27. https://doi.org/10.1007/s13738-019-01783-5
  29. Kannan K, Radhika D, Nikolova MP, Sadasivuni KK, Mahdizadeh H, Verma U. Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorg Chem Commun 2020;113:107755. https://doi.org/10.1016/j.inoche.2019.107755
  30. Umaralikhan L, Jaffar MJM. Antibacterial and anticancer properties of NiO nanoparticles by co-precipitation method. J Adv Appl Sci Res 2016;1(4):24-35.