•  
  •  
 

Al-Bahir Journal for Engineering and Pure Sciences

Abstract

The angle of thermal spraying by the flame is considered one of the important influences on the coating layer, where alumina (Al2O3)% was used as a base material, and it was reinforced with two metals (TiAl) with weight ratios of (25%) in order to produce a cermet composite material with a final thickness ranging between (300-400) µm and with a fixed thermal spray distance of 16cm, the samples resulting from the paint were thermally sintered at a temperature of (1000°C) for an hour and a half, after the samples were taken out of the oven and some mechanical operation was performed on them, some physical tests were conducted, the most important of which included an examination X-ray diffraction, as well as porosity, hardness, and adhesion strength, to show through laboratory tests that the best thermal spray angle is 90°, at a mixing ratio of 25% after thermal sintering.

References

  1. Meierhofer F, Fritsching U. Synthesis of metal oxide nanoparticles in flame sprays: review on process technology, modeling, and diagnostics. Energy Fuel 2021;35(7):5495e537. https://doi.org/10.1021/acs.energyfuels.0c04054.
  2. Dorfman M. Thermal spray coatings. In: Handbook of environmental degradation of materials. William Andrew Publishing; 2018. p. 469e88. https://doi.org/10.1016/B978-0-323-52472-8.00023-X.
  3. Fauchais P, Vardelle A. Thermal sprayed coatings used against corrosion and corrosive wear. Adv Plasma Spray Appl 2012;10:34448.
  4. Boulos M, Fauchais P, Heberlein J. Thermal spray fundamentals: from powder to part. Springer; 2021.
  5. Gonzalez R, Ashrafizadeh H, Lopera A, Mertiny P, McDonald A. A review of thermal spray metallization of polymer-based structures. J Therm Spray Technol 2016;25:897e919. https://doi.org/10.1007/s11666-016-0415-7.
  6. Nouri A, Sola A. Powder morphology in thermal spraying. J Adv Manuf Proc 2019;1(3):e10020. https://doi.org/10.1002/amp2.10020.
  7. Boronenkov V, Korobov Y. Fundamentals of arc spraying. Physical and chemical regularities. Berlin/Heidelberg, Germany: Springer; 2016.
  8. Vardelle A, Moreau C, Themelis N, Chazelas C. A perspective on plasma spray technology. Plasma Chem Plasma Process 2015;35:491e509. https://doi.org/10.1007/s11090-014-9600-y.
  9. Sunitha K, Vasudev H. A short note on the various thermal spray coating processes and effect of post-treatment on Ni-based coatings. Mater Today Proc 2012;50:1452e7. https://doi.org/10.1016/j.matpr.2021.09.017.
  10. Kahar S, Singh A, Vala U, Desai A, Smit S. Thermal sprayed coating using zinc: a review. IRJET 2020;7(6):6497e503.
  11. Liao T, Biesiekierski A, Berndt C, King P, Ivanova P, Thissen H, et al. Multifunctional cold spray coatings for biological and biomedical applications: a review. Prog Surf Sci 2022:100654. https://doi.org/10.1007/s12647-022-00597-8.
  12. Sauter M, Roth A, Grebhardt A, Killinger A. High velocity flame spraying of highly-filled ceramicdpolymer filaments (F-HVOF). Surf Coating Technol 2023;2023:129324. https://doi.org/10.1016/j.surfcoat.2023.129324.
  13. Berger L. Application of hardmetals as thermal spray coatings. Int J Refract Metals Hard Mater 2015;49:350e64. https://doi.org/10.1016/j.ijrmhm.2014.09.029.
  14. Sadeghi E, Markocsan N, Joshi S. Advances in corrosion-resistant thermal spray coatings for renewable energy power plants. Part I: effect of composition and microstructure. J Therm Spray Technol 2019;28:1749e88. https://doi.org/10.1007/s11666-019-00938-1.
  15. Vardelle A, Moreau C, Akedo J, Ashrafizadeh H, Berndt C, Berghaus J, et al. The 2016 thermal spray roadmap. J Therm Spray Technol 2016;25:1376e440.https://doi.org/10.1007/s11666-016-0473-x.
  16. Fauchais P, Heberlein J, Boulos M.Thermal spray fundamentals: from powder to part.Springer Science & Business Media; 2014.https://doi.org/10.1007/s11666-016-0473-x.
  17. Yang X, Shang W, Lu H, Liu Y, Yang L, Tan R, et al.An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applications.Sci Robot 2020;5(48):eabc8191.https://doi.org/10.1126/scirobotics.abc8191.
  18. Prasad C, Joladarashi S, Ramesh M.Comparative investigation of HVOF and flame sprayed CoMoCrSi coating.AIP Conf Proc AIP Pub LLC 2020 July;2247(1):050004.https://doi.org/10.1063/5.0003883.
  19. Wong W, Vo P, Irissou E, Ryabinin A, Legoux J, Yue S.Effect of particle morphology and size distribution on cold-sprayed pure titanium coatings.J Therm Spray Technol 2013;22:1140e53.https://doi.org/10.1007/s11666-013-9951-6.
  20. Azizpour M, Tolouei-Rad M.The effect of spraying temperature on the corrosion and wear behavior of HVOF thermal sprayed WC-Co coatings.Ceram Int 2019;45(11):13934e41.https://doi.org/10.1016/j.ceramint.2019.04.091.
  21. Khamsepour P, Oberste-Berghaus J, Aghasibeig M, Ettouil F,Dolatabadi A, Moreau C.The effect of spraying parameters of the inner-diameter high-velocity airefuel (ID-HVAF) torch on characteristics of Ti-6Al-4V in-flight particles and coatings formed at short spraying distances.J Therm Spray Technol 2023:1e18.https://doi.org/10.1007/s11666-023- 01535-z.
  22. Salih E, Allah S, Darweesh S, Mohammed H. Study of some of the physical variables of a metal-based system using the powder method. J Phys: Conf Ser IOP Pub September 2021; 1999(1):012068. https://doi.org/10.1088/1742-6596/1999/1/012068.
  23. Tan R. Development of alumina based feedstock for fused deposition modelling 3D printer (doctoral dissertation, UTAR). 2020. http://eprints.utar.edu.my/id/eprint/4113.
  24. Bahbou M, Nylen P, Wigren J. Effect of grit blasting and spraying angle on the adhesion strength of a plasma-sprayed coating. J Therm Spray Technol 2004;13:508e14. https://doi.org/10.1361/10599630421406.
  25. Tillmann W, Khalil O, Baumann I. Influence of direct splataffecting parameters on the splat-type distribution, porosity, and density of segmentation cracks in plasma-sprayed YSZ coatings. J Therm Spray Technol 2021;30:1015e27. https://doi.org/10.1007/s11666-021-01180-4.
  26. Huang W, Zeng N, Zhong R, Zhou X, Zhu L. Effects of critical plasma spraying parameters on microstructure and mechanical properties of LaPO4-8YSZ thick composite coatings. J Alloys Compd 2023;938:168688. https://doi.org/10.1016/j.jallcom.2022.168688. 2023.
  27. Yasir Asaad S, Hussein Basheer M, Hameed Ammar S, Ridha Noor J, Alosfur Firas K Mohamad, Tahir Khawla J. Design and fabrication of A low-cost dip coating system for depositing homogeneous and transparent Zno thin films. Al-Bahir J Eng Pure Sci 2022;1(2). Article 2. Available at: https://doi.org/10.55810/2312-5721.1008.
  28. Darweesh S, Ali A, Khodair Z, Majeed Z. The effect of some physical and mechanical properties of cermet coating on petroleum pipes prepared by thermal spray method. J Fail Anal Prev 2019;19:1726e38. https://doi.org/10.1007/s11668-019-00772-1.
  29. Vijay V, Santhy K, Sivakumar G, Rajasekaran B. Thermal expansion and microstructure evolution of atmospheric plasma sprayed NiCrAlY bond coat using in-situ high temperature X-ray diffraction. Surf Coating Technol 2023;452:129132. https://doi.org/10.1016/j.surfcoat.2022.129132.
  30. Rachidi R, El Kihel B, Delaunois F. Microstructure and mechanical characterization of NiCrBSi alloy and NiCrBSi-WC composite coatings produced by flame spraying. Mater Sci Eng, B 2019;241:13e21. https://doi.org/10.1016/j.mseb.2019.02.002.
  31. Ali Wissam Abbas, Mihsen Hayder Hamied, Guzar Sajid H. Novel derivative for dithiocarbamite containing A new sulphur-Azo linkage and its complexes with Sn(II), Sn(IV), Co(II), Ni(II) and Cu(II) ions; synthesis, characterization and antibacterial activity. Al-Bahir J Eng Pure Sci 2023;2(1). Article 3. Available at: https://doi.org/10.55810/2312-5721.1016.

Share

COinS