Al-Bahir Journal for Engineering and Pure Sciences


A new two-parameter estimator was developed to combat the threat of multicollinearity for the linear regression model. Some necessary and sufficient conditions for the dominance of the proposed estimator over ordinary least squares (OLS) estimator, ridge regression estimator, Liu estimator, KL estimator, and some two-parameter estimators are obtained in the matrix mean square error sense. Theory and simulation results show that, under some conditions, the proposed two-parameter estimator consistently dominates other estimators considered in this study. The real-life application result follows suit.


  1. Akdeniz F, Kaçiranlar S. On the almost unbiased generalized Liu estimator and unbiased estimation of the bias and MSE. Commun Stat Theor Methods 1995;24(7):1789e97.
  2. Akdeniz F, Roozbeh M. Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models. Stat Pap 2019;60(5):1717e39.
  3. Awwad FA, Dawoud I, Abonazel MR. Development of robust OzkaleeKaçiranlar and YangeChang estimators for regression models in the presence of multicollinearity and outliers. Concurrency Comput Pract Ex 2021:e6779.
  4. Dawoud I. A new improved estimator for reducing the multicollinearity effects. Commun Stat Simulat Comput 2021:1e12.
  5. Dawoud I, Abonazel MR. Robust DawoudeKibria estimator for handling multicollinearity and outliers in the linear regression model. J Stat Comput Simulat 2021;91(17):3678e92.
  6. Dawoud I, Kibria BM. A new biased estimator to combat the multicollinearity of the Gaussian linear regression model. Stats 2020;3(4):526e41.
  7. Gibbons DG. A simulation study of some ridge estimators. J Am Stat Assoc 1981;76(373):131e9.
  8. Hoerl AE, Kannard RW, Baldwin KF. Ridge regression: some simulations. Commun Stat Theor Methods 1975;4(2):105e23.
  9. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970;12(1):55e67.
  10. Kejian L. A new class of blased estimate in linear regression. Commun Stat Theor Methods 1993;22(2):393e402.
  11. Kibria BM, Banik S. Some ridge regression estimators and their performances. 2020.
  12. Kibria BMG. Performance of some new ridge regression estimators. Commun Stat Simulat Comput 2003;32(2):419e35.
  13. Kibria BM, Lukman AF. A new ridge-type estimator for the linear regression model: simulations and applications. Scientifica; 2020.
  14. Longley JW. An appraisal of least squares programs for the electronic computer from the point of view of the user. J Am Stat Assoc 1967;62(319):819e41.
  15. Lukman AF, Ayinde K. Review and classifications of the ridge parameter estimation techniques. Hacettepe Journal of Mathematics and Statistics 2017;46(5):953e67.
  16. Lukman AF, Ayinde K. Detecting influential observations in two-parameter Liu-ridge estimator. J Data Sci 2018;16(2):2017e218.
  17. Lukman AF, Ayinde K, Binuomote S, Clement OA. Modified ridge-type estimator to combat multicollinearity: application to chemical data. J Chemometr 2019a;33(5):e3125. Link
  18. Lukman AF, Ayinde K, Kibria BMG, Adewuyi ET. Modified ridge-type estimator for the gamma regression model. Commun Stat Simulat Comput 2020:1e15. Link
  19. Lukman AF, Ayinde K, Oludoun O, Onate CA. Combining modified ridge-type and principal component regression estimators. Scientific African 2020c;9:e00536. Link
  20. Lukman AF, Dawoud I, Kibria BM, Algamal ZY, Aladeitan B. A new Ridge-type estimator for the Gamma regression model. Scientifica 2021. Link
  21. Lukman AF, Kibria GBM. Almon-KL estimator for the distributed lag model. Arab Journal of Basic and Applied Sciences 2021;28(1):406e12. Link
  22. Massy WF. Principal components regression in exploratory statistical research. J Am Stat Assoc 1965;60(309):234e56. Link
  23. Mayer LS, Willke TA. On biased estimation in linear models. Technometrics 1973;15(3):497e508. Link
  24. Ozkale MR, Kaciranlar S. The restricted and unrestricted two-parameter estimators. Commun Stat Theor Methods 2007;36(15):2707e25. Link
  25. Roozbeh M. Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion. Comput Stat Data Anal 2018;117:45e61. Link
  26. Sakallõoğlu S, Kaçõranlar S. A new biased estimator based on ridge estimation. Stat Pap 2008;49(4):669-689. https://doi.org/10.1007/s00362-006-0342-4.
  27. Stein C. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Relatório técnico. Stanford University Stanford United States; 1956.
  28. Suhail M, Chand S, Babar I. ON some new ridge M-ESTIMATORS for linear regression models under various error distributions. Pak. J. Statist 2021;37(4):369-391. https://doi.org/10.21098/pjs.v37i4.1523.
  29. Swindel BF. Good ridge estimators based on prior information. Commun Stat Theor Methods 1976;5(11):1065-1075. https://doi.org/10.1080/03610927608827347.
  30. Trenkler G, Toutenburg H. Mean squared error matrix comparisons between biased estimatorsdan overview of recent results. Stat Pap 1990;31(1):165-179. https://doi.org/10.1007/BF02924856.
  31. Yang H, Chang X. A new two-parameter estimator in linear regression. Commun Stat Theor Methods 2010;39(6):923-934. https://doi.org/10.1080/03610920903293774.
  32. Yasin A, Erisoglu M. Influence diagnostics in two-parameter ridge regression. J Data Sci 2016;14(1):33-51. https://doi.org/10.6339/JDS.2016.14(1).03.
  33. Yasin S, Kamal S, Suhail M. Performance of some new ridge parameters in two-parameter ridge regression model. Iran J Sci Technol Trans A-Science 2021;45(1):327-341. https://doi.org/10.1007/s40995-020-00980-y.
  34. Zubair MA, Adenomon MO. Comparison of estimators efficiency for linear regressions with joint presence of autocorrelation and multicollinearity. Sci World J 2021;16(2):103-109. https://doi.org/10.1155/2021/6618258.