•  
  •  
 

Abstract

Nigeria's power sector faces persistent challenges, including dynamic instability, poor voltage regulation, and frequent grid collapses, primarily driven by reactive power deficits and transmission distances exceeding 200 km in northern regions. To bridge critical research gaps, this study employs a rigorous, multi-method approach through comprehensive EMTP-RV (Electromagnetic Transients Program) analysis of Nigeria’s 330kV 52-bus grid, PV curve-based vulnerability indexing to identify cascade-critical buses, and a novel Cost-benefit Pareto framework for optimal capacitor placement. Methodology was validated against IEEE (Institute of Electrical and Electronics Engineers) 14-bus benchmarks. Validated against IEEE 14-bus benchmarks, simulations revealed severe voltage instability in northern load buses (Maiduguri (34):0.89±0.03 p.u.; Damaturu (32): 0.92±0.02 p.u.; Jalingo (45): 0.79±0.04 p.u.). Strategic capacitor installation elevated voltages to stable levels (0.95 - 1.05 p.u.) with 93% efficacy relative to IEEE standards. PV curve analysis confirmed these buses operate within 5% of collapse thresholds. Nigerian weak buses exhibited 28% lower voltage margins than IEEE equivalents (*p*=0.03) due to 4× longer transmission corridors. This work delivers three key contributions: validated reactive power management solutions for developing economies, establishment of EMTP-RV as a robust stability diagnostic tool, and actionable recommendations including northern voltage control enhancement, infrastructure reinforcement, and adoption of simulation-driven resilience strategies.

References

[1] Ajayi OO, Awelewa AA, Atiba AE. Reactive power compensation in Nigeria's 330kV transmission network. Niger J Eng 2015;22(3):45—53. https://doi.org/10.1016/j.nje. 2015.07.002.

[2] Al-Tameemi MA. Power system stability in heavily loaded transmission networks. Cham, Switzerland: Springer; 2018.

[3] Aliyu UO, Musa B, Abubakar AS. EMTP-RV modeling of the Nigerian power grid. IEEE Trans Power Syst Sep. 2017; 33(5):4982—91. https://doi.org/10.1109/TPWRS.2017.2677921.

[4] Chen Y, Wang Z, Zhang L. Transient stability prediction using convolutional neural networks with synchrophasor data. IEEE Trans Power Deliv Feb. 2022;37(1):210—20. https://doi.org/10.1109/TPWRD.2021.3067890.

[5] Federal Ministry of Power, Nigeria. Nigeria energy transition plan 2023—2050 [Online]. Available: https://power.gov. ng/energy-transition-plan; 2023.

[6] Mohammad A. Power system stability: concepts and applications. Hoboken, NJ, USA: Wiley; 2018.

[7] Nkan IE, Adewuyi OB, Alawode KO. Generation adequacy assessment of Nigeria's power system. Int J Electr Power Energy Syst May 2019;107:238—47. https://doi.org/10.1016/j. ijepes.2018.11.023. [

8] Okafor EN, Onah CO, Ibrahim AS. STATCOM-based voltage stability enhancement in Kenya's power grid. Afr J Eng Res 2022;15(2):89—101.

[9] Okonkwo PC, Mbamaluikem PO, Nwosu CC. Grid collapse analysis in Nigeria: causes and economic impacts. Energy Rep Feb. 2020;6:310—8. https://doi.org/10.1016/j.egyr.2020.01.026.

[10] Padiyar KR. Power system dynamics: stability and control. 2nd ed. Hyderabad, India: BS Publ.; 2008.

[11] Prakash A, Singh VP, Mohanty SR. Classification of power system disturbances: a review. IET Gener Transm Distrib Aug. 2016;10(11):2787—98. https://doi.org/10.1049/ietgtd.2015.1227.

[12] Rahman MS, Islam MR, Hossain MJ. Optimal D-STATCOM placement in Bangladesh power network. Int J Electr Power Energy Syst Apr. 2021;125:106502. https://doi.org/10.1016/j. ijepes.2020.106502.

[13] Silva RJ, Costa LM, Oliveira JG. Wide-area measurement systems for grid resilience: Brazil's case study. Elec Power Syst Res Jul. 2022;208:107896. https://doi.org/10.1016/j. epsr.2022.107896.

[14] Smith T, Johnson RL, Williams K. Inverter-based resources and system inertia: challenges for renewable integration. Renew Sustain Energy Rev Oct. 2023;174:113159. https://doi. org/10.1016/j.rser.2023.113159.

[15] Teeparthi K, Vinod Kumar DM, Raju PS. Power system stability enhancement using FACTS controllers. J Mod Power Syst Clean Energy Jan. 2020;8(1):1—12. https://doi. org/10.35833/MPCE.2018.000680.

[16] Transmission Company of Nigeria, Nigerian grid code: 2022 revision, 2022. [Online]. Available:https://tcn.gov.ng/reports/ grid-code.

[17] Zhang Q, Zhao Y, Li X. Hybrid data-physics models for power system dynamics. Appl Energy Mar. 2021;285:116467. https://doi.org/10.1016/j.apenergy.2021.116467.

[18] Zimmerman RD, Murillo-Sanchez CE, Thomas RJ. MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans Power Syst Feb. 2011;26(1):12—9. https://doi.org/10.1109/ TPWRS.2010.2051168.

[19] Guo Y, Wang P, Li Z. Multi-objective reactive power optimization in weak grids using deep reinforcement learning. IEEE Trans Sustain Energy Jul. 2023;14(3):1521—32. https:// doi.org/10.1109/TSTE.2023.3245678.

[20] Khan S, Ahmad I, ul Haq S. Adaptive VAR compensation strategies for renewable-rich grids in developing countries. Int J Electr Power Energy Syst Jan. 2024;155:109567. https:// doi.org/10.1016/j.ijepes.2023.109567.

[21] Nguyen TT, Le XH. Resilience-oriented capacitor placement in transmission networks: a Pareto-optimal approach. Elec Power Syst Res Sep. 2023;214:108951. https://doi.org/ 10.1016/j.epsr.2022.108951.

[22] Rossi L, et al. Real-time dynamic stability assessment for grids with high renewable penetration. IEEE Trans Power Syst Mar. 2023;38(2):1023—35. https://doi.org/10.1109/ TPWRS.2022.3218765.

[23] Patel MK, Sharma A. Reactive power management in longdistance transmission networks: a machine learning framework. Elec Power Syst Res Aug. 2023;221:109432. https://doi.org/10.1016/j.epsr.2023.109432.

[24] Tan C, et al. Cost-benefit optimization of capacitor banks in renewable-integrated weak grids. IEEE Trans Power Syst Jan. 2024;39(1):210—23. https://doi.org/10.1109/TPWRS.2023. 3317890

Share

COinS