•  
  •  
 

Al-Bahir Journal for Engineering and Pure Sciences

Abstract

This study investigates the feasibility of using silicon carbide-based layered surface acoustic wave (SAW) devices in acousto-optic applications. The acousto-optic properties of the temperature-stable layered structure TeO3/SiC/128oY-X LiNbO3 are investigated through theoretical analysis. This analysis includes the evaluation of key parameters such as the overlap integral, figure of merit, and diffraction efficiency. The SAW propagation characteristics and field profiles required for these calculations are obtained using SAW software. Results show that the layered structure has high diffraction efficiency of nearly 96% and a promising value for the acousto-optic figure of merit, indicating potential use in low driving power acousto-optic devices. The study concludes that the 3C-SiC-based layered structure possesses excellent acousto-optic properties and has potential for use in acousto-optic devices that can withstand harsh environmental conditions.

References

[1] Heenkenda R, Hirakawa K, Sarangan A. Tunable optical filter using phase change materials for smart IR night vision applications. Opt Express 2021;29:33795e803. https://doi.org/ 10.1364/OE.440299.

[2] Liu J, Khan ZU, wang C, Zhang H, Sarjoghian S. Review of Graphene modulators from the low to the high figure of merits. J Phys D Appl Phys 2020;53:233002. https://doi.org/ 10.1088/1361-6463/ab7cf6.

[3] Al-Hayali SKM,Al-JanabiAH. Triple-wavelength passively Qswitched ytterbium-doped fibre laser using zinc oxide nanoparticles film as a saturable absorber. J Mod Opt 2018;65(13): 1559e64. https://doi.org/10.1080/09500340.2018.1455922.

[4] Machikhin AS, et al. Acousto-Optical Deflector For Non- Mechanical Manipulating Using Optical Tweezer. J Phys: Conf Ser 2020;1461:012087. https://doi.org/10.1088/1742- 6596/1461/1/012087.

[5] Kakio S. Acousto-Optic Modulator Driven by Surface Acoustic Waves. Acta Phys Pol, A 2015;127(1):15e9. https:// doi.org/10.12693/APhysPolA.127.15.

[6] Duocastella M, surdo S, Zunino A, Diaspro A, Saggau P. Acousto-optic systems for advanced microscopy. J Phys Photon 2021;vol. 3:012004. https://doi.org/10.1088/2515-7647/ abc23c.

[7] Savage N. Acousto-optic devices. Nat Photonics 2010;4: 728e9. https://doi.org/10.1038/nphoton.2010.229.

[8] Kapfinger S, Reichert T, Lichtmannecker S, et al. Dynamic acousto-optic control of a strongly coupled photonic molecule. Nat Commun 2015;6:8540. https://doi.org/10.1038/ ncomms9540.

[9] Tanabe T, Notomi M, Kuramochi E, et al. Trapping and delaying photons for one nanosecond in an ultrasmall high- Q photonic-crystal nanocavity. Nat Photonics 2007;1:49e52. https://doi.org/10.1038/nphoton.2006.51.

10] Smith MJA, Martijn de Sterke C, Wolff C, Lapine M, Poulton CG. Enhanced acousto-optic properties in layered media Vol. 96. Phys Rev 2017:064114.

[11] Belovickis J, Rimeika R, Ciplys D. Acousto-optic interaction with leaky surface acoustic waves in Y-cut LiTaO3 crystals. Ultrasonics 2012;52(5):593e7. https://doi.org/10.1016/ j.ultras.2011.12.004.

[12] Colston G, Myronov M. Controlling the optical properties of monocrystalline 3C-SiC heteroepitaxially grown on silicon at low temperatures. Semicond Sci Technol 2017;32(1e6):14005. https://doi.org/10.1088/1361-6641/aa8b2a.

[13] Caliendo C, Laidoudi F. Experimental and Theoretical Study of Multi frequency Surface Acoustic Wave Devices in a Single Si/SiO2/ZnO Piezoelectric Structure. Sensors 2020;20: 1380. https://doi.org/10.3390/s20051380. No. 5.

[14] Dewan N, Sreenivas K, Gupta V. Temperature-Compensated Devices Using Thin TeO2 Layer With Negative TCD. In: IEEE Elec. Dev. Lett.; 2006. p. 752e4. https://doi.org/ 10.1109/LED.2006.880644. vol. 27 no. 9.

[15] Soni ND, Bhola J. Enhanced Properties of SAW Device Based on Beryllium Oxide Thin Films. Crystals 2021;11(4):332. https://doi.org/10.3390/cryst11040332.

[16] Guofang F, Jiping N, Jisheng Y. The design of ZnO/LiNbO3 thin-plating surface acoustical waveguide in acousto-optic tunable filters. Opt Laser Technol 2007;39(2):421e3. https:// doi.org/10.1016/j.optlastec.2005.06.031.

[17] Shandilya S, Sreenivas K, Gupta V. Acousto optic and SAW propagation characteristics of a temperature stable multilayered structures based on LiNbO3 and diamond. J Phys D Appl Phys 2008;41:1e6. https://doi.org/10.1088/0022-3727/41/ 2/025108.

[18] Dewan N, Sreenivas K, Gupta V. Theoretical studies on a TeO2/ZnO/diamond layered structure for zero TCD SAW devices. Semicond Sci Technol 2008;23:085002. https:// doi.org/10.1088/0268-1242/23/8/085002.

[19] Wang L, et al. Enhanced Performance of 17.7 Ghz Saw Devices Based on AlN/diamond/si Layered Structure With Embedded Nano transducer. Appl Phys 2017;111(25):253502. https://doi.org/10.1063/1.5006884.

[20] Zhang H, Wang H. Investigation of Surface Acoustic Wave Propagation Characteristics in New Multilayer Structure: SiO2/IDT/LiNbO3/Diamond/Si. Micromachines 2021;12(11): 1286. https://doi.org/10.3390/mi12111286.

[21] Sharma M, Kaur P, Kumar P. Recent Advances in Acousto- Optic Devices: Materials, Fabrication Techniques, and Applications. In: Handbook of optoelectronic device modeling and simulation. Cham: Springer; 2020. p. 341e70.

[22] Song J, Hu C, Yan Y, Yang Q. Advanced film preparation techniques for acousto-optic devices. In: Proceedings of the 2016 international conference on advanced mechatronic systems (ICAMechS). IEEE; 2016. p. 223e7.

[23] Bhaktha SN, Drabe CG. Silicon carbide as a novel material for next-generation acousto-optic devices. Appl Opt 2018; 57(13):3583e90.

[24] Chaudhuri S, Kundu M. Zinc oxide-based acousto-optic devices: A review. J Mater Sci Mater Electron 2020;31(15): 12530e51.

[25] Parchur AK, Dhoble SJ. Acousto-optic properties of zinc sulfide. J Appl Phys 2008;103(11):113506. [26] Zhang X, et al. Recent advances in perovskite-based acoustooptic devices. Adv Opt Mater 2020;8(20):2000037.

[27] Soni ND. SAW propagation characteristics of TeO3/3C-SiC/ LiNbO3 layered structure. Mat Res Exp 2018;5:046309. https://doi.org/10.1088/2053-1591/aabe6b.

[28] Fu S, et al. High-Frequency Surface Acoustic Wave Devices Based on ZnO/SiC Layered Structure. IEEE Electron Device Lett 2019;40(1):103e6. https://doi.org/10.1109/LED.2018.288 1467.

[29] Xu H, et al. Enhanced Coupling Coefficient in Dual-Mode ZnO/SiC Surface Acoustic Wave Devices with Partially Etched Piezoelectric Layer. Appl Sci 2021;11(4):6383. https:// doi.org/10.3390/app11146383.

[30] Mehregany M, Zorman CA, Roy S, Fleischman AJ, Wu CH, Rajan N. Silicon carbide for microelectromechanical systems. Int Mater Rev 2013;45:85e108. https://doi.org/10.1179/ 095066000101528322.

[31] Garrisi F, Chatzopoulos I, Cernansky R, Politi A. Silicon carbide photonic platform based on suspended sub-wavelength waveguides. J Opt Soc Am 2020;B37:3453e60. https:// doi.org/10.1364/JOSAB.403170S.

[32] Yamada BS, Song, Asano T, Noda S. Silicon carbide based photonic crystal nano cavities for ultra-broadband operation from infrared to visible wavelengths. Appl Phys Lett 2011; 99(20):201102. https://doi.org/10.1063/1.3647979.

[33] Liu YM, Prucnal PR. Low-loss silicon carbide optical waveguides for silicon-based optoelectronic devices. In: IEEE Phot. Tech. Lett.; 1993. p. 704e7. https://doi.org/10.1109/ 68.219717. vol. 5 No. 6.

[34] Soni R, Sharma M, Kumar P. Silicon carbide (SiC) based layered structures for acousto-optic wave devices: A review. Opt Mater 2018;84:598e611.

[35] Fahmy AH, Adler EL. Multilayer acoustic-surface-wave program. In: Proc IEEE; 1975. p. 470e2. https://doi.org/ 10.1049/piee.1975.0128. Vol. 122 no. 5.

[36] Djemia P, Roussigne Y, Dirras G, Jackson K. Elastic properties of b-SiC films by Brillouin light scattering. J Appl Phys 2004;95:2324. https://doi.org/10.1063/1.1642281.

[37] Kovacs G, Anhorn M, Engan HE, Visintini G, Ruppel CCW. Improved material constants for LiNbO3 and LiTaO3. In: IEEE symp. Ultras.; 1990. p. 435e8. https://doi.org/10.1109/ ULTSYM.1990.171403. vol. 1.

[38] Cimalla V, Pezoldt J, Ambacher O. Group III Nitride And SiC Based MEMs And NEMs: Materials Properties, Technology And Applications. J Phys D Appl Phys 2007;40:6386. https:// doi.org/10.1088/0022-3727/40/20/S19

[39] Djemia P, Bouamama K. Ab-initio calculations of the photoelastic constants of the cubic SiC polytype. J Phys: Conf Ser 2013; 454:12060. https://doi.org/10.1088/1742-6596/454/1/012060.

[40] Jain S, Mansingh A. Thin film layered structure for acoustooptic devices. J Phys D Appl Phys 1992;25:1116. https:// doi.org/10.1088/0022-3727/25/7/014.

[41] Andrushchak S, et al. Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature. J Appl Phys 1990;vol. 106:073510. https://doi.org/10.1063/1.3238507.

[42] Rana L, Gupta V, Dewan N, Tomar M. SAW field and Acousto-optical Interaction in ZnO/AlN/Sapphire Structure. In: Joint IEEE Int Symp Appl Ferro Sep; 2016. https://doi.org/ 10.1109/ISAF.2016.7578095.

[43] Mys O, Krupych O, Kostyrko M, Vlokh R. Anisotropy of acousto-optic figure of merit for LiNbO3 crystalsdanisotropic diffraction: erratum. Appl Opt 2016;55: 9823e9. https://doi.org/10.1364/AO.55.009823.

[44] Mys O, Kostyrko M, Zapeka B, Krupych O, Vlokh R. Anisotropy of acoustooptic figure of merit for TeO2 crystals. 2. Anisotr Diffr: Errata 2016;17(4):148. https://doi.org/10.3116/ 16091833/17/4/148/2016. Ukr. J. Phys. Opt.

[45] Voloshinov VB, Khorkin VS, Kulakova LA, Gupta N. Optic, Acoustic And Acousto-Optic Properties Of Tellurium In Close-To-Axis Regime Of Diffraction. J Phys Commun 2017; 1:025006. https://doi.org/10.1088/2399-6528/Aa86ba.

[46] Shih WC,Wang TL, Hsu LL. Surface acoustic wave properties of Aluminum Oxide films on Lithium Niobate. Thin Solid Films 2010;518:7143e6. https://doi.org/10.1016/j.tsf.2010.07.029.

Share

COinS