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Abstract 

The fast increase in volume and speed of information created by mobile devices, along with 
the availability of web-based applications, has considerably contributed to the massive 
collection of data. Approximate Nearest Neighbor (ANN) is essential in big size databases 
for comparison search to offer the nearest neighbor of a given query in the field of computer 
vision and pattern recognition. Many hashing algorithms have been developed to improve 
data management and retrieval accuracy in huge databases. However, none of these 
algorithms took bandwidth into consideration, which is a significant aspect in information 
retrieval and pattern recognition. As a result, our work created a Geo-SPEBH algorithm to 
solve this basic gap. The paper then assesses the performance of the Geo-SPEBH 
algorithm in terms of bandwidth in a distributed computing environment. Geo-performance 
SPEBH's was compared to existing state-of-the-art approaches using a network analyzer 
called Wire shark. The simulation results reveal that during retrieval, the same kb/sec of data 
is carried from source to destination and from destination to user. When the coding length is 
8bit, the findings show that 0.091kb/sec of data is required to transport data from source to 
destination. Each algorithm with the same bit code requires the same amount of bandwidth 
to convey data. 

 

Keywords: Balance partitioning, Bandwidth, Cloud computing, Indexing, Information 
retrieval, Geo-SPEBH. 
 

1. Introduction  

Cloud computing is a new technology that offers a framework for dealing with complicated 

data applications that demand high-performance applications. As a consequence of 

advancements in mobile industry, devices such as smart phones and tablets are being 

utilized for a variety of applications [1-4]. The accessibility of the online, for example, 

broadband Internet connection [5], paired with mobile devices, has made digital information 

collecting simpler. Sufficient and legal management of this data is predicted to lead to new 

discoveries and understanding about markets, social orders, human behavior, and the 

environment [6-7]. Significant information has been extracted from raw data using 

information extraction algorithms [8-9]. Astronomers have lately used the Sloan digital sky 
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survey conducted in the past as a database [10-11]. Many hashing algorithms have been 

developed to improve data management and retrieval accuracy in huge databases. 

However, none of these algorithms took bandwidth into consideration, which is a significant 

aspect in information retrieval and pattern recognition. The Geo-SPEBH, like many other 

hashing algorithms, is an improved indexing method designed for efficient data storage and 

management in distributed computing applications. This paper therefore, intend to evaluate 

Geo-SPEBH algorithm with other algorithms based on bandwidth for big data retrieval in 

cloud computing. 

Given that bandwidth is one of the most valuable assets, particularly in multimedia and 

distributed computing applications, its absence may result in significant loss in Quality of 

Service. The amount of bandwidth required in a multimedia application is often influenced by 

the program demand, the user's workload, the user's location, and the type of device being 

used [12]. These factors vary fast and may cause bandwidth shortages at times. Having 

enough bandwidth to foresee these issues is consequently crucial. This paper therefore, 

compares the performance of hashing base algorithms to the geometric similarity 

embedding-based hashing algorithm (Geo-SPEBH) in terms of bandwidth requirements and 

how much data is required for information transmission from source to destination using wire 

shark network analyzer in kb/sec. The fundamental idea is to long-hash the codes of these 

improved algorithms. 

Recent researches have attempted to provide solutions that will improve data 

management and retrieval accuracy in huge databases. [13] explored the virtualization 

overhead in relation to network performance in Virtual Machine (VM) based cloud platforms 

to identify the performance bottleneck and idiosyncrasies of these platforms to determine the 

cause. As the contextual investigation, the Xen hypervisor-based cloud Amazon EC2 was 

used, and wide estimations on the network performance of its massive cases were 

performed. Estimated results reveal that network performance bottlenecks and 

idiosyncrasies might be prevalent and significant within a comparable server farm. [14] 
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evaluate the wide-band performance of multiple dipole antenna matching networks. The 

bandwidth of correlation and matching efficiency represents the performance of matching 

networks, which are extensions of the single-antenna transfer speed idea to multiple 

antenna systems. Similarly, the effect of propagation circumstances on matching and 

bandwidth was investigated. [15] developed Hy-bridORAM, a useful Oblivious RAM (ORAM) 

with constant transfer speed that can be used in a broad range of applications. HybridORAM 

combines the best features of layer and tree ORAMs by combining frequency-accessed tiny 

levels of the former to increase reaction time with minor shuffles of the latter to conserve 

store capacity. [16] developed a novel geometric design that eliminated edge user inter-cell 

interference (ICI) that occurs in overlapping zones between neighboring cells to improve 

edge user throughput based on the combined optimization of power and bandwidth. [17] 

performed an end-user research of cloud-based gaming services, polled players on 

subjective quality engagement, and assessed their in-game execution. They also ran an 

experiment to assess the network properties of cloud-based gaming services. The 

experiment findings reveal that when latency grows, so does the quality of experience and 

player execution, although latency has no influence on the frame rate or average throughput 

of cloud-based gaming services. 

Approximate Nearest Neighbor (ANN) gives assistance in enhancing search velocity and 

is frequently required [18-19]. Data-independent [20-21] and data-dependent [22-26] are 

examples. [27] created a supervised FastHash method that consists of a two-step learning 

technique based on binary code derivation, followed by binary classification based on an 

ensemble of decision trees. However, the writers overlooked bandwidth as a tool 

accountable for the amount of data transmitted from source to destination. 

[28] developed a hashing approach that uses two hash codes of varying lengths as 

searches for stored photos in the database. Compact hash code was employed in this 

strategy to save storage costs. Long hash code was also used for queries to improve search 

precision. To retrieve photographs from the database, the query is processed using the 
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Hamming distance of the long hash code and the cyclical concatenation of the compact hash 

code of the stored images for a higher accuracy recall rate. Iterative Quantisation (ITQ), 

Iterative Quantisation with Random Fourier Feature (ITQRFF), and Shift-invariant Kernel 

based Locality Sensitive Hashing (SKLSH) are compared to the suggested technique. This 

technique outperforms ITQFF on the basis that the ACH's asymmetric hashing approach 

provides more exact location data for the request. The exploratory results demonstrate that 

ACH outperforms the existing techniques in terms of accuracy with a code length of 64 bits. 

The disadvantage of ACH is that it did not consider bandwidth as a tool for determining the 

quantity of data transported from source to destination. 

[29] presented a method for preserving the underlying geo-metric information in data. To 

learn compact hash codes, the authors study the sparse reconstructive connection of data. It 

mostly gets past fitting in estimating the experimental exactness on named data since the 

information provided by each bit is used to obtain the necessary features of hash codes. To 

get the goal function, the information theoretic constraint is fused into the relaxed empirical 

fitness as a regularizing term. Equations (1) and (2) provide the empirical fitness and 

objective function, respectively. 

𝐽(𝑊) =  
ଵ

ଶ
 𝑇𝑟൛𝑊் 𝑋௟𝑇𝑋௟

்𝑊ൟ                      (1) 

𝐽௟(𝑊) =  
ଵ

ଶ
 𝑇𝑟൛𝑊் 𝑋௟𝑇𝑋௟

்𝑊ൟ +  
ఒ

ଶ
𝑇𝑟{𝑊்𝑋𝑋்𝑊}   (2)  

 

Where 𝑇𝑟൛𝑊் 𝑋௟𝑇𝑋௟
்𝑊ൟ is the information theory term.  

To learn the weighted matrix W to build the hash function as in Equation (2), the hashing 

technique employs sequential learning to maximize the goal function in Equation (1). 

𝑋(𝑋௟) = 𝑠𝑖𝑔𝑛(𝑊்𝑋௟)                           (3) 



 
 

 5 

By minimizing the goal function in Equation (3), the weight matrix W and the sparse 

weight matrix optimally learn as in Equation (4). However, the author did not take bandwidth 

into account. 

(𝑊, 𝑆) = ୟ୰୥ ௠௜ మ(ௐ,ௌ)
௪,௦

       ..             (4) 

[30] established a unique hypersphere-based hashing function to transfer more spatially 

coherent data points into a binary hash code using a new binary code distance function, the 

spherical Hamming distance applicable to the hypersphere-based coding scheme. The main 

disadvantage of this strategy is that a tremendous amount of bandwidth will be required to 

transmit information from source to destination. 

Hypersphere-based hashing functions are used in the proposed Geo-SPEBH to encode 

proximity areas in high-dimensional domains. As the code length increases, the use of 

hypersphere enhances search precision performance. Geo-SPEBH will increase as the code 

length increases to provide better performance. Geo-SPEBH makes use of the mathematical 

qualities of the primary component of features, which have been proven to be extremely 

discriminative, to ensure that fewer features are entered into the hash table. 

[32] presented a BGAN, which is a Binary Generative Adversarial Network with the sole 

intention to retrieve image. BGAN was developed to overcome the issues binary codes 

generation without relaxing and to equip the representation of binary with the capacity of 

accurate retrieval of image. They used an unsupervised BGAN to insert images into binary 

codes. The BGAN may construct an image that looks similar to the preserved one by limiting 

the input noise variable of the Generative Adversarial Network (GAN) to binary and adapting 

it to the highlights of each input image. Another sign-activation approach and loss function 

were also presented to drive the learning process, which includes neighbourhood structure 

loss, content loss, and the novel models for adversarial loss. To extract features for the 

encoder, the author proposes a structure of five maximum convolution pooling layers and 

five sets of convolution layers.  
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[33] created a hashing-based estimator for kernel density in high dimensions. They 

investigate the challenge of creating its data structure using a collection of data P and a 

kernel function that approximates the kernel density of an inquiry point in sub-linear time. 

They provide a class of unbiased estimators for bounding their variance. The resulting 

estimator generates competent data structures for estimating the kernel density in high 

dimensions for a variety of regularly used kernels. Their work is particularly notable in the 

development of data structures that enhance basic random sampling in high dimensions. 

The difficulties with these approaches are that bandwidth, which is a critical necessity in 

determining the quantity of data transported from source to destination, is not taken into 

account. As a result, we compare the performance of hashing algorithms based on 

bandwidth requirements to estimate the amount of bandwidth required to transport data 

using the wire shark network analyzer in kb/sec. This paper is organized into five sections. 

Section one is the introduction that captures problem definition and the need to evaluate 

hashing algorithms based on bandwidth utilization in cloud. The second section explains 

methods adopted in evaluation of Geo-SPEBH algorithms with other algorithms to check 

bandwidth usage. Section three shows the results obtained from the evaluation while section 

four discussed the results and section five is the conclusion.  

 

2. Materials and Methods  

The suggested framework is made up of four sections, each of which serves a distinct 

purpose in achieving the goals. The goal of learning hashing-based techniques is to use the 

mapping function ℎ(𝑥) to project an m-dimensional real valued feature vector to an n-

dimensional binary hash code while maintaining the feature vector's and dataset's similarity. 

The suggested technique can conserve the hidden discriminative geometric information 

among the data points. The framework investigates the magnitude structure of geometric 

data features. The quantised hashing results are used to index the image features. The Geo-

SPEBH employs a hypersphere-based hashing function for processing binary hash codes 
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with a joint method that simultaneously improves search precision and search speed. A 

dataset including sample data points will be indexed to decrease cost of storage, computing 

expenses, and to simplify query precision and speed. This work addresses the samples of 

the data points as 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥ே, where X represents the database. 𝑋 =

{𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … 𝑥௡, … , 𝑥ே} ∈  𝑅ௗ × ே represents the data points contained in the database. In this 

case, X is the database and R^(d × N) is the dimensional space of size N. Mapping of these 

data points to k-bit binary hash code is carried out by the hash function model in equation (5) 

𝐻(𝑥) = {ℎଵ(𝑥), … ℎ௞(𝑥)}  ∈ {−1, 1}௞            (5) 

Where length of the binary hash code is denoted by k..  

 

2.1 Similarity preserving term Q(y) 

To increase the precision of searches in a dataset, a similarity preserving term was 

applied. In equation (11) of [35], the similarity preservation term comprises the similarity 

characteristics among the data points Q(y), with a restricted Hamming distance. This section 

of the suggested framework is responsible for retaining the commonalities of two sample 

data points in the created framework's training dataset. The training set contains two data 

samples 𝑋௜ and 𝑋௝ from a dataset X. The similarity between the two data samples is 

extracted as 𝑄௜௝ from comparative geometric feature points of image data. Geometric 

coordinate qualities are required for similarity preservation in hashing techniques. Following 

that, similar data points are assured to have similar binary hash codes with minor hamming 

distance. 

 

2.2 Balance Partitioning for Independence  

To ensure that data points are distributed uniformly in the hash container, we make each 

hash function independent of the others. That is, the functionality of one hash function does 

not rely on the operation of the other. This is because each hash function relies on itself to 
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distribute data points evenly among distinct hash codes. As a result, because binary digits 

are addressed by zeros (0's) and ones (1's), each hash function is given the opportunity to 

become a 0 or a 1. This means that in order for hash functions to be free, each hash function 

must have the option of being one or zero, and the various binary hash codes must be 

independent of one another, as shown in equation (4) above. The freedom of hash functions 

is demonstrated in the following scenario: In a normal setting, the likelihood that an event 

𝐵௜  will be a hash function is one (1). 𝐵௜ is the event that ℎ௜(𝑥) = 1. Then define two 

occurrences 𝐵௜ and 𝐵௝ as independent if and only if the probability of 𝐵௜ = 1 and the 

probability of 𝐵௝ = 1 are similar to the probability of  𝐵௜  = 1 multiplied by the probability of 𝐵௝  = 

1 as in equation (10). By establishing each bit's independence, related bits are mapped into 

the same bucket with a high likelihood of having an equal chance of becoming one (1). To 

balance the partitioning of data points for each bit, one of equations (6) or (7) is employed. 

𝑝௥[ℎ௜(𝑥௜) = 1] =  
ଵ

ଶ
,𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑡               (6) 

𝑁௜ = ∑ 𝑁௜
ଶಾ

௜ୀଵ                                    (7) 

Where 𝑁௜ is the number of training samples in the 𝑖௧௛ bucket and 𝑀 is the number of 

buckets. To achieve independence between two bits given that 𝑥 ∈ 𝑋 and 1 ≤ 𝑖 < 𝑗 ≤ 𝑡 

where i and j are the 𝑖𝑡ℎ and j𝑡ℎ data points, and t is the threshold, hash functions are design 

to be independent and the data points are distributed equally to each hash bucket as in 

equation (8).  

𝑝௥ൣℎ௜(𝑥) = 1, ℎ௝(𝑥) =  1൧ =  𝑝௥[ℎ௜(𝑥) = 1] . 𝑝௥ൣℎ௝(𝑥) = 1൧ = 
ଵ

ଶ
 . 

ଵ

ଶ
 =

ଵ

ସ
  (8) 

The intersection represents the equal chance of the code bit having a binary hash code 1. 

The next step is to combine the similarity preserving term with the balancing partitioning 

sections to increase search accuracy and time at the same time. In equation (6), we embed 

the data points into each container. 
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2.3 Joint Optimization  

We use the similarity preserving term 𝑄(௬) for search accuracy and the least information 

criteria in this section. The suggested framework's joint optimization component is 

constructed and is answerable for the simultaneous optimization of search accuracy and 

search time, allowing for high search precision with short search time. A linear function is 

parameterized and relaxed to facilitate optimization. 

The joint optimization is in charge of processing the hash bit that will be used for the 

query and identifying the container with comparable hash bits to the query, as well as 

regulating the loading of data samples from the selected containers into memory. The hash 

function autonomous is designed in this case to be free to distribute data points evenly 

across multiple binary hash codes. To keep the temporal complexity to a minimum, each 

container will have an equal amount of samples in order to have a balanced bucket 

(container). This is done to cut down on search time. To have an equal amount of samples in 

each bucket in order to balance the buckets  𝑁 =
ே

ଶಾ  [36], use the equation (7). 

By minimizing the Hamming distance between comparable data points, the search 

accuracy is enhanced. 

𝑄(𝑦) =  𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑖, 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁 + 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑗, 𝑡𝑎𝑘𝑖𝑛𝑔 

 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑁. 

 

This may be stated mathematically as: 

𝑄(𝑦) ∑ 𝑥௜ୀଵ,…ே + ∑ 𝑥௝ୀଵ,…ே       (9) 

The similarity preserving term and balanced partitioning are combined to increase search 

precision and time at the same time [35]. 

The joint optimization algorithm for search exactness and time is introduced in Algorithm 

1. 
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Algorithm 1: Joint Optimization  

1. Start 
2. Input: the training dataset𝑋௜, 𝑖 = 1,2,3, … , 𝑁, similarity matrix 𝑊 and 𝑊 = 𝑊௜௝; the 

number of required bits 𝐾 to map the full dataset as hash codes; BP; N; M; 
3. Initialise: Sum = 0; Sim = 0; SimM = 0; BP = 0; V = 2**M; yi = 0; JointO = 0//jointO is 

the memory location for joint optimisation   
4.                 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑐 
5.                        𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑐 
6.                        Get y(𝑖), y(𝑗), x(𝑖, 𝑗) 
7. Sum = Sum + (𝑦(𝑖) − 𝑦(𝑗))**2 
8.                        j = j + 1  
9.                      𝑖𝑓 𝑗 ≤ 𝑐 goto step 6 
10.                        end if 
11.                        𝑖 = 𝑖 + 1 
12.                          𝑖𝑓 𝑖 ≤ 𝑐 goto step 17 
13.                                end if  
14.                         end for 
15.                 end for 
16.  Sim = Sum 
17.                    break; 
18.                      𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑉 
19.                         get 𝑁(𝑖) 
20.                         BP = N(𝑖) ∗∗ 2 
21.                         𝑖 = 𝑖 + 1  
22.                         𝑖𝑓 𝑖 ≤ 𝑉 goto step 40 
23.                            end if 
24.                      end for 
25.  Print Sim, BP 
26.  //Incorporating similarity preserving term and balanced partitioning// 
27. JointO = Sim + BP 
28. //computing 𝑢௜// 
29. 𝑇(𝑎, 𝑏) = 0, swap = 0 
30.  Get x 
31.  Get b 
32.                      𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑎 
33.                        𝑓𝑜𝑟 𝑗 = 𝑖 + 1 𝑡𝑜 𝑏 
34.                            Get 𝑇(𝑖, 𝑗) 
35.                            j = j + 1  
36.                           𝑖𝑓 𝑗 ≤ 𝑏 goto step 55 
37.                           i = i + 1 
38.                           𝑖𝑓 𝑖 ≤ 𝑎 goto step 55 
39.                                      end if  
40.                                  end if 
41.                              end for 
42.                       end for 
43.        𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑎 
44.              𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑏 
45. Swap = 𝑇(𝑖, 𝑗) 
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46. 𝑇(𝑖, 𝑗) = 𝑇(𝑗, 𝑖) 
47. 𝑇(𝑗, 𝑖) = 𝑠𝑤𝑎𝑝 
48. ℎ(𝑖) = 𝑠𝑖𝑔𝑛(𝑇(𝑗, 𝑖) ∗ 𝑥(𝑖) − 𝑏//T is the projection matrix of 𝑑 × 𝑀 and 𝑏 is a vector// 
49.             𝑗 = 𝑗 + 1 
50.                   𝑖𝑓 𝑗 ≤ 𝑏 goto step 45 
51.            𝑖 = 𝑖 + 1 
52.                   𝑖𝑓 𝑖 ≤ 𝑎 goto step 44 
53.                                       end if  
54.                                  end if 
55.                              end for 
56.                       end for 
57. for i = 1 
58. Print h(i) 
59. 𝑖 = 𝑖 + 1 
60.            𝑖𝑓 𝑖 ≤ 𝑎 goto step 78 
61.             end if 
62.  end for         
63.  Stop  

 
 

2.4 Metrics of Performance  
 

Bandwidth is the metric used to evaluate the suggested approach. Using the wire shark 

network analyzer, cutting-edge methodologies were compared with Geo-SPBH to determine 

the network bandwidth required to transport data from source to destination. This is done to 

evaluate network bandwidth performance using the SIFT 1B dataset as obtained from 

http://corpus-texmex.irisa.fr/. The Bandwidth metric quantifies the amount of network 

bandwidth required to transfer data from source to destination. It calculates how much 

network bandwidth is required to send data from source to destination for each code length 

of 8, 16, 32, 48, and 64 bits. 

 

2.5 Comparison Competitors   
 

Simulation was used in the validation of the proposed algorithm. The wire shark is a 

network analysis device used to determine how much bandwidth is required to transfer data 

from source to destination. Robust Discrete Code Modeling [29], Robust Geometric 
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Correction [30], Discrete Discriminant Hashing [31], Binary Generative Adversarial Networks 

[32], Large Graph Hashing [34], and Geo-SPEBH [22] are the cutting-edge techniques 

employed in the evaluation of the suggested framework. 

 

 

2.6 System requirements and tools 
 

The tests were all conducted and ran on a 3.40 GHz CPU with four cores and 16GB 

RAM. For experimentation, simulation, and implementation, a Java programming tool built 

on CloudSim was employed. The CloudSim is built with one server farm on 100 cloud-lets, 

each having a capacity of 300 input and output sizes and a length of 5000. To integrate the 

suggested method with the cloud, the CloudSim is required. For the wire shark network 

analyzer tool, 1GB of network bandwidth is required. 

 

3. Results  

The goal is to produce discriminative binary hash codes that use just a small number of 

bits to code a large amount of data in a dataset, yielding excellent search precision and a 

faster query time with minimal memory consumption. 

SIFT 1B dataset was generated from simulation results using cutting-edge 

methodologies, and the results were compared to the Geo-SPEBH algorithm. As shown in 

Table 1 and subsequently Figure 1, the results reveal that all strategies required the same 

amount of network bandwidth of 0.091kb/sec when the code length is 8. 

 
4. Discussion  

The SIFT B dataset obtained from ftp://ftp.irisa.fr/local/texmex/corpus/bigann_learn.bvecs.gz   

contains one billion SIFT features represented by 128 dimension vectors. The amount of 

basis vectors is 1,000,000,000, and the query vectors are 10,000, 100,000,000 for learning. 

This dataset was used to run all of the algorithms with varying bit counts of 8, 16, 34, 48, and 
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64 to determine the bandwidth required to transport information from source to destination. 

The approaches being compared include RDCM, RGC, DDH, BGAN, and Geo-SPEBH. 

According to Table 1, all of the examined approaches used the same amount of network 

bandwidth of 0.091, 0.930, 0.0908, 0.092, and 0.0147 kb/sec for code lengths of 8, 16, 32, 

48, and 64 respectively. This is because predictions are generated using lengthy code words 

and an even distribution of data points. Because of the high precision-recall rate attained by 

the algorithms using Hamming distance, the same amount of network bandwidth is required 

for each corresponding code length. The ability of RDCM [29] to learn good quality discrete 

codes and hash functions contributes to its performance. RGC [30] obtained the 

performance by removing geometric transformation and the composite rotation-scaling-

translation. 

The DDH [31] technique, which learns a robust similarity metric for maximizing similarity 

of same class discrete hash codes as well as similarity of different class discrete hash codes 

at the same time, facilitates information transmission. Furthermore, the use of Binary 

Generative Adversarial Networks (BGAN) [32] to incorporate images in binary codes 

influences data transport. The minimization of Euclidean distance in [34] to get binary codes 

for index creation increases the bandwidth needed for data delivery. The narrower area 

between the data points of the compared methods increased the bandwidth required for data 

transport from source to destination. Table 1 displays the bandwidth requirement values for 

the SIFT 1B dataset for all compared algorithms in kb/sec. 

 

Table 1 Simulation results for the proposed Geo-SPEBH and existing methods 

Methods  Bandwidth (kb/sec) Code length (bits) 

RDCM 8 0.091 

 16 0.930 

 32 0.0908 
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Methods  Bandwidth (kb/sec) Code length (bits) 

 48 0.092 

 64 0.0147 

RGC 8 0.091 

 16 0.930 

 32 0.0908 

 48 0.092 

 64 0.0147 

DDH 8 0.091 

 16 0.930 

 32 0.0908 

 48 0.092 

 64 0.0147 

BGAN 8 0.091 

 16 0.980 

 32 0.0908 

 48 0.092 

 64 0.0147 

LGH 8 0.091 

 16 0.930 

 32 0.0908 

 48 0.092 

 64 0.0147 

Geo-SPEBH 8 0.091 

 16 0.930 

 32 0.0908 
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Methods  Bandwidth (kb/sec) Code length (bits) 

 48 0.092 

 64 0.0147 

 

 

Figure 1 depicts a graphical representation of simulation results produced in a run alongside 

wire shark for all strategies based on bandwidth. The orange line represents the amount of 

bandwidth necessary for code bits of 8, 16, 32, 48, and 64. 

 

 
5. Conclusion  

Given that bandwidth is one of the most valuable resources, especially in multimedia and 

distributed computing applications and its absence might cause a serious reduction in 

Quality of Service, this paper evaluate Geo-SPEBH algorithm and other state-of-the-art 

algorithms to check the level of bandwidth utilization for big data retrieval in cloud. Three 

steps were taken to achieve the goal of this work, each of the steps serving a distinct 

purpose. Similarity preserving term Q(y) was used to increase the precision of searches in 
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the dataset. To ensure that data points are distributed uniformly in the hash container, each 

hash function was made independently of the others so as to balance partitioning for 

independence. Joint optimization component was constructed to answer for simultaneous 

optimization of search accuracy and search time, allowing for high search precision with 

short search time. Results obtained showed that, the developed method (Geo-SPEBH) and 

the compared algorithms recorded the same amount of network bandwidth for each code 

length on the SIFT 1B dataset for all code lengths. This is due to the fact that the predictions 

were created from the data points, which are uniformly distributed. Further research should 

look at data points not uniformly distributed. 
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