

 1

Evaluation of Geo-SPEBH algorithm based on Bandwidth for Big Data retrieval in
Cloud Computing

Timothy Moses, Federal University Lafia

Abstract

The fast increase in volume and speed of information created by mobile devices, along with
the availability of web-based applications, has considerably contributed to the massive
collection of data. Approximate Nearest Neighbor (ANN) is essential in big size databases
for comparison search to offer the nearest neighbor of a given query in the field of computer
vision and pattern recognition. Many hashing algorithms have been developed to improve
data management and retrieval accuracy in huge databases. However, none of these
algorithms took bandwidth into consideration, which is a significant aspect in information
retrieval and pattern recognition. As a result, our work created a Geo-SPEBH algorithm to
solve this basic gap. The paper then assesses the performance of the Geo-SPEBH
algorithm in terms of bandwidth in a distributed computing environment. Geo-performance
SPEBH's was compared to existing state-of-the-art approaches using a network analyzer
called Wire shark. The simulation results reveal that during retrieval, the same kb/sec of data
is carried from source to destination and from destination to user. When the coding length is
8bit, the findings show that 0.091kb/sec of data is required to transport data from source to
destination. Each algorithm with the same bit code requires the same amount of bandwidth
to convey data.

Keywords: Balance partitioning, Bandwidth, Cloud computing, Indexing, Information
retrieval, Geo-SPEBH.

1. Introduction

Cloud computing is a new technology that offers a framework for dealing with complicated

data applications that demand high-performance applications. As a consequence of

advancements in mobile industry, devices such as smart phones and tablets are being

utilized for a variety of applications [1-4]. The accessibility of the online, for example,

broadband Internet connection [5], paired with mobile devices, has made digital information

collecting simpler. Sufficient and legal management of this data is predicted to lead to new

discoveries and understanding about markets, social orders, human behavior, and the

environment [6-7]. Significant information has been extracted from raw data using

information extraction algorithms [8-9]. Astronomers have lately used the Sloan digital sky

2

 2

survey conducted in the past as a database [10-11]. Many hashing algorithms have been

developed to improve data management and retrieval accuracy in huge databases.

However, none of these algorithms took bandwidth into consideration, which is a significant

aspect in information retrieval and pattern recognition. The Geo-SPEBH, like many other

hashing algorithms, is an improved indexing method designed for efficient data storage and

management in distributed computing applications. This paper therefore, intend to evaluate

Geo-SPEBH algorithm with other algorithms based on bandwidth for big data retrieval in

cloud computing.

Given that bandwidth is one of the most valuable assets, particularly in multimedia and

distributed computing applications, its absence may result in significant loss in Quality of

Service. The amount of bandwidth required in a multimedia application is often influenced by

the program demand, the user's workload, the user's location, and the type of device being

used [12]. These factors vary fast and may cause bandwidth shortages at times. Having

enough bandwidth to foresee these issues is consequently crucial. This paper therefore,

compares the performance of hashing base algorithms to the geometric similarity

embedding-based hashing algorithm (Geo-SPEBH) in terms of bandwidth requirements and

how much data is required for information transmission from source to destination using wire

shark network analyzer in kb/sec. The fundamental idea is to long-hash the codes of these

improved algorithms.

Recent researches have attempted to provide solutions that will improve data

management and retrieval accuracy in huge databases. [13] explored the virtualization

overhead in relation to network performance in Virtual Machine (VM) based cloud platforms

to identify the performance bottleneck and idiosyncrasies of these platforms to determine the

cause. As the contextual investigation, the Xen hypervisor-based cloud Amazon EC2 was

used, and wide estimations on the network performance of its massive cases were

performed. Estimated results reveal that network performance bottlenecks and

idiosyncrasies might be prevalent and significant within a comparable server farm. [14]

 3

evaluate the wide-band performance of multiple dipole antenna matching networks. The

bandwidth of correlation and matching efficiency represents the performance of matching

networks, which are extensions of the single-antenna transfer speed idea to multiple

antenna systems. Similarly, the effect of propagation circumstances on matching and

bandwidth was investigated. [15] developed Hy-bridORAM, a useful Oblivious RAM (ORAM)

with constant transfer speed that can be used in a broad range of applications. HybridORAM

combines the best features of layer and tree ORAMs by combining frequency-accessed tiny

levels of the former to increase reaction time with minor shuffles of the latter to conserve

store capacity. [16] developed a novel geometric design that eliminated edge user inter-cell

interference (ICI) that occurs in overlapping zones between neighboring cells to improve

edge user throughput based on the combined optimization of power and bandwidth. [17]

performed an end-user research of cloud-based gaming services, polled players on

subjective quality engagement, and assessed their in-game execution. They also ran an

experiment to assess the network properties of cloud-based gaming services. The

experiment findings reveal that when latency grows, so does the quality of experience and

player execution, although latency has no influence on the frame rate or average throughput

of cloud-based gaming services.

Approximate Nearest Neighbor (ANN) gives assistance in enhancing search velocity and

is frequently required [18-19]. Data-independent [20-21] and data-dependent [22-26] are

examples. [27] created a supervised FastHash method that consists of a two-step learning

technique based on binary code derivation, followed by binary classification based on an

ensemble of decision trees. However, the writers overlooked bandwidth as a tool

accountable for the amount of data transmitted from source to destination.

[28] developed a hashing approach that uses two hash codes of varying lengths as

searches for stored photos in the database. Compact hash code was employed in this

strategy to save storage costs. Long hash code was also used for queries to improve search

precision. To retrieve photographs from the database, the query is processed using the

4

 4

Hamming distance of the long hash code and the cyclical concatenation of the compact hash

code of the stored images for a higher accuracy recall rate. Iterative Quantisation (ITQ),

Iterative Quantisation with Random Fourier Feature (ITQRFF), and Shift-invariant Kernel

based Locality Sensitive Hashing (SKLSH) are compared to the suggested technique. This

technique outperforms ITQFF on the basis that the ACH's asymmetric hashing approach

provides more exact location data for the request. The exploratory results demonstrate that

ACH outperforms the existing techniques in terms of accuracy with a code length of 64 bits.

The disadvantage of ACH is that it did not consider bandwidth as a tool for determining the

quantity of data transported from source to destination.

[29] presented a method for preserving the underlying geo-metric information in data. To

learn compact hash codes, the authors study the sparse reconstructive connection of data. It

mostly gets past fitting in estimating the experimental exactness on named data since the

information provided by each bit is used to obtain the necessary features of hash codes. To

get the goal function, the information theoretic constraint is fused into the relaxed empirical

fitness as a regularizing term. Equations (1) and (2) provide the empirical fitness and

objective function, respectively.

𝐽(𝑊) =
ଵ

ଶ
 𝑇𝑟൛𝑊் 𝑋௟𝑇𝑋௟

்𝑊ൟ (1)

𝐽௟(𝑊) =
ଵ

ଶ
 𝑇𝑟൛𝑊் 𝑋௟𝑇𝑋௟

்𝑊ൟ +
ఒ

ଶ
𝑇𝑟{𝑊்𝑋𝑋்𝑊} (2)

Where 𝑇𝑟൛𝑊் 𝑋௟𝑇𝑋௟
்𝑊ൟ is the information theory term.

To learn the weighted matrix W to build the hash function as in Equation (2), the hashing

technique employs sequential learning to maximize the goal function in Equation (1).

𝑋(𝑋௟) = 𝑠𝑖𝑔𝑛(𝑊்𝑋௟) (3)

 5

By minimizing the goal function in Equation (3), the weight matrix W and the sparse

weight matrix optimally learn as in Equation (4). However, the author did not take bandwidth

into account.

(𝑊, 𝑆) = ୟ୰୥ ௠௜ మ(ௐ,ௌ)
௪,௦

 .. (4)

[30] established a unique hypersphere-based hashing function to transfer more spatially

coherent data points into a binary hash code using a new binary code distance function, the

spherical Hamming distance applicable to the hypersphere-based coding scheme. The main

disadvantage of this strategy is that a tremendous amount of bandwidth will be required to

transmit information from source to destination.

Hypersphere-based hashing functions are used in the proposed Geo-SPEBH to encode

proximity areas in high-dimensional domains. As the code length increases, the use of

hypersphere enhances search precision performance. Geo-SPEBH will increase as the code

length increases to provide better performance. Geo-SPEBH makes use of the mathematical

qualities of the primary component of features, which have been proven to be extremely

discriminative, to ensure that fewer features are entered into the hash table.

[32] presented a BGAN, which is a Binary Generative Adversarial Network with the sole

intention to retrieve image. BGAN was developed to overcome the issues binary codes

generation without relaxing and to equip the representation of binary with the capacity of

accurate retrieval of image. They used an unsupervised BGAN to insert images into binary

codes. The BGAN may construct an image that looks similar to the preserved one by limiting

the input noise variable of the Generative Adversarial Network (GAN) to binary and adapting

it to the highlights of each input image. Another sign-activation approach and loss function

were also presented to drive the learning process, which includes neighbourhood structure

loss, content loss, and the novel models for adversarial loss. To extract features for the

encoder, the author proposes a structure of five maximum convolution pooling layers and

five sets of convolution layers.

6

 6

[33] created a hashing-based estimator for kernel density in high dimensions. They

investigate the challenge of creating its data structure using a collection of data P and a

kernel function that approximates the kernel density of an inquiry point in sub-linear time.

They provide a class of unbiased estimators for bounding their variance. The resulting

estimator generates competent data structures for estimating the kernel density in high

dimensions for a variety of regularly used kernels. Their work is particularly notable in the

development of data structures that enhance basic random sampling in high dimensions.

The difficulties with these approaches are that bandwidth, which is a critical necessity in

determining the quantity of data transported from source to destination, is not taken into

account. As a result, we compare the performance of hashing algorithms based on

bandwidth requirements to estimate the amount of bandwidth required to transport data

using the wire shark network analyzer in kb/sec. This paper is organized into five sections.

Section one is the introduction that captures problem definition and the need to evaluate

hashing algorithms based on bandwidth utilization in cloud. The second section explains

methods adopted in evaluation of Geo-SPEBH algorithms with other algorithms to check

bandwidth usage. Section three shows the results obtained from the evaluation while section

four discussed the results and section five is the conclusion.

2. Materials and Methods

The suggested framework is made up of four sections, each of which serves a distinct

purpose in achieving the goals. The goal of learning hashing-based techniques is to use the

mapping function ℎ(𝑥) to project an m-dimensional real valued feature vector to an n-

dimensional binary hash code while maintaining the feature vector's and dataset's similarity.

The suggested technique can conserve the hidden discriminative geometric information

among the data points. The framework investigates the magnitude structure of geometric

data features. The quantised hashing results are used to index the image features. The Geo-

SPEBH employs a hypersphere-based hashing function for processing binary hash codes

 7

with a joint method that simultaneously improves search precision and search speed. A

dataset including sample data points will be indexed to decrease cost of storage, computing

expenses, and to simplify query precision and speed. This work addresses the samples of

the data points as 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥ே, where X represents the database. 𝑋 =

{𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … 𝑥௡, … , 𝑥ே} ∈ 𝑅ௗ × ே represents the data points contained in the database. In this

case, X is the database and R^(d × N) is the dimensional space of size N. Mapping of these

data points to k-bit binary hash code is carried out by the hash function model in equation (5)

𝐻(𝑥) = {ℎଵ(𝑥), … ℎ௞(𝑥)} ∈ {−1, 1}௞ (5)

Where length of the binary hash code is denoted by k..

2.1 Similarity preserving term Q(y)

To increase the precision of searches in a dataset, a similarity preserving term was

applied. In equation (11) of [35], the similarity preservation term comprises the similarity

characteristics among the data points Q(y), with a restricted Hamming distance. This section

of the suggested framework is responsible for retaining the commonalities of two sample

data points in the created framework's training dataset. The training set contains two data

samples 𝑋௜ and 𝑋௝ from a dataset X. The similarity between the two data samples is

extracted as 𝑄௜௝ from comparative geometric feature points of image data. Geometric

coordinate qualities are required for similarity preservation in hashing techniques. Following

that, similar data points are assured to have similar binary hash codes with minor hamming

distance.

2.2 Balance Partitioning for Independence

To ensure that data points are distributed uniformly in the hash container, we make each

hash function independent of the others. That is, the functionality of one hash function does

not rely on the operation of the other. This is because each hash function relies on itself to

8

 8

distribute data points evenly among distinct hash codes. As a result, because binary digits

are addressed by zeros (0's) and ones (1's), each hash function is given the opportunity to

become a 0 or a 1. This means that in order for hash functions to be free, each hash function

must have the option of being one or zero, and the various binary hash codes must be

independent of one another, as shown in equation (4) above. The freedom of hash functions

is demonstrated in the following scenario: In a normal setting, the likelihood that an event

𝐵௜ will be a hash function is one (1). 𝐵௜ is the event that ℎ௜(𝑥) = 1. Then define two

occurrences 𝐵௜ and 𝐵௝ as independent if and only if the probability of 𝐵௜ = 1 and the

probability of 𝐵௝ = 1 are similar to the probability of 𝐵௜ = 1 multiplied by the probability of 𝐵௝ =

1 as in equation (10). By establishing each bit's independence, related bits are mapped into

the same bucket with a high likelihood of having an equal chance of becoming one (1). To

balance the partitioning of data points for each bit, one of equations (6) or (7) is employed.

𝑝௥[ℎ௜(𝑥௜) = 1] =
ଵ

ଶ
,𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑡 (6)

𝑁௜ = ∑ 𝑁௜
ଶಾ

௜ୀଵ (7)

Where 𝑁௜ is the number of training samples in the 𝑖௧௛ bucket and 𝑀 is the number of

buckets. To achieve independence between two bits given that 𝑥 ∈ 𝑋 and 1 ≤ 𝑖 < 𝑗 ≤ 𝑡

where i and j are the 𝑖𝑡ℎ and j𝑡ℎ data points, and t is the threshold, hash functions are design

to be independent and the data points are distributed equally to each hash bucket as in

equation (8).

𝑝௥ൣℎ௜(𝑥) = 1, ℎ௝(𝑥) = 1൧ = 𝑝௥[ℎ௜(𝑥) = 1] . 𝑝௥ൣℎ௝(𝑥) = 1൧ =
ଵ

ଶ
 .

ଵ

ଶ
 =

ଵ

ସ
 (8)

The intersection represents the equal chance of the code bit having a binary hash code 1.

The next step is to combine the similarity preserving term with the balancing partitioning

sections to increase search accuracy and time at the same time. In equation (6), we embed

the data points into each container.

 9

2.3 Joint Optimization

We use the similarity preserving term 𝑄(௬) for search accuracy and the least information

criteria in this section. The suggested framework's joint optimization component is

constructed and is answerable for the simultaneous optimization of search accuracy and

search time, allowing for high search precision with short search time. A linear function is

parameterized and relaxed to facilitate optimization.

The joint optimization is in charge of processing the hash bit that will be used for the

query and identifying the container with comparable hash bits to the query, as well as

regulating the loading of data samples from the selected containers into memory. The hash

function autonomous is designed in this case to be free to distribute data points evenly

across multiple binary hash codes. To keep the temporal complexity to a minimum, each

container will have an equal amount of samples in order to have a balanced bucket

(container). This is done to cut down on search time. To have an equal amount of samples in

each bucket in order to balance the buckets 𝑁 =
ே

ଶಾ [36], use the equation (7).

By minimizing the Hamming distance between comparable data points, the search

accuracy is enhanced.

𝑄(𝑦) = 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑖, 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁 + 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑗, 𝑡𝑎𝑘𝑖𝑛𝑔

 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 1 𝑡𝑜 𝑁.

This may be stated mathematically as:

𝑄(𝑦) ∑ 𝑥௜ୀଵ,…ே + ∑ 𝑥௝ୀଵ,…ே (9)

The similarity preserving term and balanced partitioning are combined to increase search

precision and time at the same time [35].

The joint optimization algorithm for search exactness and time is introduced in Algorithm

1.

10

 10

Algorithm 1: Joint Optimization

1. Start
2. Input: the training dataset𝑋௜, 𝑖 = 1,2,3, … , 𝑁, similarity matrix 𝑊 and 𝑊 = 𝑊௜௝; the

number of required bits 𝐾 to map the full dataset as hash codes; BP; N; M;
3. Initialise: Sum = 0; Sim = 0; SimM = 0; BP = 0; V = 2**M; yi = 0; JointO = 0//jointO is

the memory location for joint optimisation
4. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑐
5. 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑐
6. Get y(𝑖), y(𝑗), x(𝑖, 𝑗)
7. Sum = Sum + (𝑦(𝑖) − 𝑦(𝑗))**2
8. j = j + 1
9. 𝑖𝑓 𝑗 ≤ 𝑐 goto step 6
10. end if
11. 𝑖 = 𝑖 + 1
12. 𝑖𝑓 𝑖 ≤ 𝑐 goto step 17
13. end if
14. end for
15. end for
16. Sim = Sum
17. break;
18. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑉
19. get 𝑁(𝑖)
20. BP = N(𝑖) ∗∗ 2
21. 𝑖 = 𝑖 + 1
22. 𝑖𝑓 𝑖 ≤ 𝑉 goto step 40
23. end if
24. end for
25. Print Sim, BP
26. //Incorporating similarity preserving term and balanced partitioning//
27. JointO = Sim + BP
28. //computing 𝑢௜//
29. 𝑇(𝑎, 𝑏) = 0, swap = 0
30. Get x
31. Get b
32. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑎
33. 𝑓𝑜𝑟 𝑗 = 𝑖 + 1 𝑡𝑜 𝑏
34. Get 𝑇(𝑖, 𝑗)
35. j = j + 1
36. 𝑖𝑓 𝑗 ≤ 𝑏 goto step 55
37. i = i + 1
38. 𝑖𝑓 𝑖 ≤ 𝑎 goto step 55
39. end if
40. end if
41. end for
42. end for
43. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑎
44. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑏
45. Swap = 𝑇(𝑖, 𝑗)

 11

46. 𝑇(𝑖, 𝑗) = 𝑇(𝑗, 𝑖)
47. 𝑇(𝑗, 𝑖) = 𝑠𝑤𝑎𝑝
48. ℎ(𝑖) = 𝑠𝑖𝑔𝑛(𝑇(𝑗, 𝑖) ∗ 𝑥(𝑖) − 𝑏//T is the projection matrix of 𝑑 × 𝑀 and 𝑏 is a vector//
49. 𝑗 = 𝑗 + 1
50. 𝑖𝑓 𝑗 ≤ 𝑏 goto step 45
51. 𝑖 = 𝑖 + 1
52. 𝑖𝑓 𝑖 ≤ 𝑎 goto step 44
53. end if
54. end if
55. end for
56. end for
57. for i = 1
58. Print h(i)
59. 𝑖 = 𝑖 + 1
60. 𝑖𝑓 𝑖 ≤ 𝑎 goto step 78
61. end if
62. end for
63. Stop

2.4 Metrics of Performance

Bandwidth is the metric used to evaluate the suggested approach. Using the wire shark

network analyzer, cutting-edge methodologies were compared with Geo-SPBH to determine

the network bandwidth required to transport data from source to destination. This is done to

evaluate network bandwidth performance using the SIFT 1B dataset as obtained from

http://corpus-texmex.irisa.fr/. The Bandwidth metric quantifies the amount of network

bandwidth required to transfer data from source to destination. It calculates how much

network bandwidth is required to send data from source to destination for each code length

of 8, 16, 32, 48, and 64 bits.

2.5 Comparison Competitors

Simulation was used in the validation of the proposed algorithm. The wire shark is a

network analysis device used to determine how much bandwidth is required to transfer data

from source to destination. Robust Discrete Code Modeling [29], Robust Geometric

12

 12

Correction [30], Discrete Discriminant Hashing [31], Binary Generative Adversarial Networks

[32], Large Graph Hashing [34], and Geo-SPEBH [22] are the cutting-edge techniques

employed in the evaluation of the suggested framework.

2.6 System requirements and tools

The tests were all conducted and ran on a 3.40 GHz CPU with four cores and 16GB

RAM. For experimentation, simulation, and implementation, a Java programming tool built

on CloudSim was employed. The CloudSim is built with one server farm on 100 cloud-lets,

each having a capacity of 300 input and output sizes and a length of 5000. To integrate the

suggested method with the cloud, the CloudSim is required. For the wire shark network

analyzer tool, 1GB of network bandwidth is required.

3. Results

The goal is to produce discriminative binary hash codes that use just a small number of

bits to code a large amount of data in a dataset, yielding excellent search precision and a

faster query time with minimal memory consumption.

SIFT 1B dataset was generated from simulation results using cutting-edge

methodologies, and the results were compared to the Geo-SPEBH algorithm. As shown in

Table 1 and subsequently Figure 1, the results reveal that all strategies required the same

amount of network bandwidth of 0.091kb/sec when the code length is 8.

4. Discussion

The SIFT B dataset obtained from ftp://ftp.irisa.fr/local/texmex/corpus/bigann_learn.bvecs.gz

contains one billion SIFT features represented by 128 dimension vectors. The amount of

basis vectors is 1,000,000,000, and the query vectors are 10,000, 100,000,000 for learning.

This dataset was used to run all of the algorithms with varying bit counts of 8, 16, 34, 48, and

 13

64 to determine the bandwidth required to transport information from source to destination.

The approaches being compared include RDCM, RGC, DDH, BGAN, and Geo-SPEBH.

According to Table 1, all of the examined approaches used the same amount of network

bandwidth of 0.091, 0.930, 0.0908, 0.092, and 0.0147 kb/sec for code lengths of 8, 16, 32,

48, and 64 respectively. This is because predictions are generated using lengthy code words

and an even distribution of data points. Because of the high precision-recall rate attained by

the algorithms using Hamming distance, the same amount of network bandwidth is required

for each corresponding code length. The ability of RDCM [29] to learn good quality discrete

codes and hash functions contributes to its performance. RGC [30] obtained the

performance by removing geometric transformation and the composite rotation-scaling-

translation.

The DDH [31] technique, which learns a robust similarity metric for maximizing similarity

of same class discrete hash codes as well as similarity of different class discrete hash codes

at the same time, facilitates information transmission. Furthermore, the use of Binary

Generative Adversarial Networks (BGAN) [32] to incorporate images in binary codes

influences data transport. The minimization of Euclidean distance in [34] to get binary codes

for index creation increases the bandwidth needed for data delivery. The narrower area

between the data points of the compared methods increased the bandwidth required for data

transport from source to destination. Table 1 displays the bandwidth requirement values for

the SIFT 1B dataset for all compared algorithms in kb/sec.

Table 1 Simulation results for the proposed Geo-SPEBH and existing methods

Methods Bandwidth (kb/sec) Code length (bits)

RDCM 8 0.091

 16 0.930

 32 0.0908

14

 14

Methods Bandwidth (kb/sec) Code length (bits)

 48 0.092

 64 0.0147

RGC 8 0.091

 16 0.930

 32 0.0908

 48 0.092

 64 0.0147

DDH 8 0.091

 16 0.930

 32 0.0908

 48 0.092

 64 0.0147

BGAN 8 0.091

 16 0.980

 32 0.0908

 48 0.092

 64 0.0147

LGH 8 0.091

 16 0.930

 32 0.0908

 48 0.092

 64 0.0147

Geo-SPEBH 8 0.091

 16 0.930

 32 0.0908

 15

Methods Bandwidth (kb/sec) Code length (bits)

 48 0.092

 64 0.0147

Figure 1 depicts a graphical representation of simulation results produced in a run alongside

wire shark for all strategies based on bandwidth. The orange line represents the amount of

bandwidth necessary for code bits of 8, 16, 32, 48, and 64.

5. Conclusion

Given that bandwidth is one of the most valuable resources, especially in multimedia and

distributed computing applications and its absence might cause a serious reduction in

Quality of Service, this paper evaluate Geo-SPEBH algorithm and other state-of-the-art

algorithms to check the level of bandwidth utilization for big data retrieval in cloud. Three

steps were taken to achieve the goal of this work, each of the steps serving a distinct

purpose. Similarity preserving term Q(y) was used to increase the precision of searches in

16

 16

the dataset. To ensure that data points are distributed uniformly in the hash container, each

hash function was made independently of the others so as to balance partitioning for

independence. Joint optimization component was constructed to answer for simultaneous

optimization of search accuracy and search time, allowing for high search precision with

short search time. Results obtained showed that, the developed method (Geo-SPEBH) and

the compared algorithms recorded the same amount of network bandwidth for each code

length on the SIFT 1B dataset for all code lengths. This is due to the fact that the predictions

were created from the data points, which are uniformly distributed. Further research should

look at data points not uniformly distributed.

Disclosure of Funding

This research did not receive any specific grant from funding agencies in the public,

commercial, or not-for profit sector.

Disclosure of any Conflict of Interest

We know of no conflicts of interest associated with this publication, and there is no

significant financial support for this work that could have influenced its outcome. As a

corresponding author, I confirm that the manuscript has been read and approved for

submission by all the named authors.

References

[1] Danan T, Surya SC, Rafael CN, Leila A. A platform for monitoring and sharing of
generic health data in the cloud. Vol. 35, Future generation computer system. 2014.
pp.102-113.

[2] Abubakar UO, Aisha YU, Maryam M, Hauwa A, Boukari S, Gital AY. Minimum
Search-time Algorithm for Image Retrieval in Cloud Computing. Vol. 15, International
Journal of Intelligent Engineering and Systems, 2021, pp. 596-606.

[3] Fiona HM, Christina C, Annemarie C, Jane S, Hugh S, Mary U. Evaluating mobile
phone application for health behaviour change: A systematic review. Vol. 2, Journal
of Telemedicine and Telecare. 2018, pp. 22-40.

 17

[4] Andre B, Shane G, Jeffrey P. The persistence of broadband user behaviour:
implications for universal services and competition policy. Vol. 43, Elsevier,
Telecommunications policy. 2018, pp. 1-27.

[5] Tatcha S, Hitoshi M. The Internet of Things as an accelerator of advancement of
broadband networks: A case of Thailand. Vol. 42, Telecommunications Policy. 2018,
pp. 293-303.

[6] York E, Conley SN, Henriksen AD, Caserta D, Etka N, Harrington N, Jennings M,
Kodua S, Pates R, Sevison Z, Terry E, VanNostrand S, Vargas K. Co-Imagining the
Futures of Implementation Precision Medicine Using Scenario Analysis and Design
Fiction. Vol. 7, OMICS A Journal of Integrative Biology. 2019, pp. 340–349,
https://doi.org/10.1089/omi.2019.0083

[7] Wang Y, Shrivastava A, Ryu J. FLASH : Randomized Algorithms Accelerated over
CPU-GPU for Ultra-High Dimensional Similarity Search. 2017, pp.1-4, 2018.

[8] Salih BA, Wongthongtham P, Beheshti SMR, Zajabbari B. Towards a Methodology
for Social Business Intelligence in the Era of Big Social Data Incorporating Trust and
Semantic Analysis. Vol. 520, Lecture Notes in Electrical Engineering. 2019, pp.519–
527. https://doi.org/10.1007/978-981-13-1799-6_54

[9] Liu S, Wang Y, Wen A, Wang L, Hong N, Shen F, Bedrick S, Hersh W, Liu H.
CREATE: Cohort Retrieval Enhanced by Analysis of Text from Electronic Health
Records using OMOP Common Data Model [Internet]. 2019; 5,
http://arxiv.org/abs/1901.07601

[10] Merkys A, Vaitkus A, Chateigner D, Moeck P, Murray-rust P, Quiros M, Downs R,
Kaminsky W, Le AB. Crystallography Open Database : history, development,
perspectives [Internet]. 2019, pp. 1-16,
https://www.researchgate.net/publication/335604699_Crystallography_Open_Databa
se_History_Development_and_Perspectives/link/5dd66feca6fdcc2b1fa977b4/downlo
ad

[11] Tonello N, Tallada P, Serrano S, Carretero J, Eriksen M, Folger M, Neissner C,
Sevilla-Noarbe I, Castander FJ, Delfino M, De-Vicente J, Fernandez E, Garcia-
Bellido J, Gaztanaga E, Padilla C, Sanchez E, Tortorelli L. The PAU Survey:
Operation and orchestration of multi-band survey data. Vol. 27, Astronomy and
Computing. 2019, pp.171–188.

[12] Deepak P, Sahoo BPS, Sambit M, Satyabrata S. Cloud Computing Features, Issues
and Challenges: A Big Picture. IEEE International Conference on Computational
Intelligence and Networks. 2015, pp.116-123.

[13] Ryan S, Wang F, Wang H, Liu J. A Deep Investigation into Network Performance in
Virtual Machine Based Cloud Environments. IEEE international conference on
Computer Communications. 2014, pp.1285-1293.

[14] Buon K, Lau M, Jørgen BA, Gerhard K Andreas FM. Impact of Matching Network on
Bandwidth of Compact Antenna Arrays. Vol. 54, IEEE Transactions on Antennas and
Propagation, 2006, pp.3225-3238.

[15] Li B, Yanyu H, Zheli L, Jin L, Zhihong T, Siu-Ming Y. HybridORAM: Practical
Oblivious Cloud Storage with Constant Bandwidth [Internet], 2018,
doi:10.1016/j.ins.2018.02.019

[16] Assabir A, Elmhamdi J, Hammouch A, Throughput enhancement of the edge User
Equipment Based on the Power- Bandwidth Tradeoff in the Optical Attocell Networks.
Vol. 13, International Journal of Intelligent Engineering and Systems, 2020, pp.337-
355.

[17] McManus JP, Day TG, Mailloux ZJ. The Effects of Latency, Bandwidth, and Packet
Loss on Cloud-Based Gaming Services [Internet]. 2019, pp. 1-58,
https://digitalcommons.wpi.edu/iqp-all/5327.

[18] Keane MT, Kenny EM. How Case-Based Reasoning Explains Neural Networks. A
Theoretical Analysis of XAI Using Post-Hoc Explanation-by-Example from a Survey

18

 18

of ANN-CBR Twin-Systems. Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 11680 LNAI, 2019, pp.155–171, https://doi.org/10.1007/978-3-030-
29249-2_11

[19] Cai Q, Pan Y, Yao T, Yan C, Mei T. Memory Matching Networks for One-Shot Image
Recognition. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2018, pp.4080-4088,
https://doi.org/10.1109/CVPR.2018.00429

[20] Lv Q, Josephson W, Wang Z, Charikar M, Li K. Multi-probeLSH: Efficient indexing for
high-dimensional similarity search. Proceedings of international conference on Very
Large Data Bases. 2007, pp.950-961,
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf

[21] Dong W, Wang Z, Josephson W, Charikar M, Li K. Modelling LSH for performance
tuning. In Proceedings of the ACM conference on information and knowledge
management. 2008, pp. 669-678,
https://www.cs.princeton.edu/cass/papers/cikm08.pdf

[22] Abubakar UO, Boukari S, Abdulsalam YG, Hauwa A. Performance Evaluation of
Geometric Similarity Preserving embedding-Based Hashing for Big Data in Cloud
Computing. Vol. 98, Journal of Theoretical & Applied Information Technology. 2020,
pp. 378-390.

[23] Oladunjoye JA, Moses T, Okpor J, Bako AR. Performance study of the memory
utilization of an improved pattern matching algorithm using bit-parallelism. Vol. 3,
Journal of Computer Science and Engineering. 2022, pp. 49-59.

[24] Boukari S, Abubakar UO, Abdulsalam YG, Iliya MA. Performance Evaluation of
Geometric Similarity Preserving Embedding Based Hashing. Vol. 7, Global Scientific
Journals. 2019, pp.642-657.

[25] Ram KK, Arunav S, Rabul HL. Image Authentication Based on Robust Image
Hashing with Geometric correction. Vol. 7, Journal of Multimdia Tools and
Applications. 2017, pp.25409-25429.

[26] Yan C, Jielin J, Zhihui L, Zuojin H, Waikeun W. Supervised discrete discriminant
Hashing for Image Retrieval. Vol. 78, In: Proc. of International Conference. On
Pattern Recognition. 2018, pp.79-90.

[27] Guosheng L, Chunhua S, Anton VD. Supervised hashing using graph cuts and
boosted decision trees. Vol. 37, IEEE transactions on pattern analysis and machine
intelligence. 2015, pp. 2317-2331, https://doi.org/10.1109/TPAMI.2015.2404776

[28] Yueming L, Wing WY, Ziqian Z, Daneil SY, Patrick PK, Asymetric Cyclcial Hashing
for Large-Scale-Image Retrieval. Vol. 17, IEEE Transaction on Multimedia. 2015,
pp.1225-1235.

[29] Ye R, Xuelong L. Compact Structure Hashing Via Sparse and Similarity Embedding.
Vol. 46, IEEE Transactions on Cybernetics. 2016, pp.718-728.

[30] Heo JP, Youngwoon L, Junfeng H, Shih-Fu C, Sung-Eui Y, Spherical Hashing: Binary
Code Embedding with Hypersphere. IEEE Transaction on Pattern Analysis and
Machine Intelligence. 2015, pp.1-14.

[31] Yan C, Jielin J, Zhihui L, Zuojin H, Waikeun W. Supervised discrete discriminant
Hashing for Image Retrieval. Vol. 78, In Proc. of International Conference on Pattern
Recognition. 2018, pp.79-90.

[32] Jingkuan S, He T, Lianli G, Xing X, Alan H, Heng ST. Binary Generative Adversarial
Networks for Image Retrieval. Vol. 32, In: Proceedings of the AAAI Conference on
Artificial Intelligence. 2018, pp. 394-401.

[33] Charikar M, Paris S. Hashing_based-Estimators for Kernel density in High
Dimensions [Internet]. 2018, ar.xiv:1808.10530v1[cs.DS].

 19

[34] Li X, Hu D, Nie F. Large Graph Hashing with Spectral Rotation. Vol. 31, In:
Proceedings of the AAAI Conference on Artificial Intelligence. 2017, pp. 1-7,
https://dtaoo.github.io/papers/2017_LGHSR.pdf

[35] Junfeng H, Regunathan R, Shih-Fu F, Claus B. Compact Hashing with Joint
Optimization of Search Accuracy an Time [Internet]. 2011, pp. 753-760,
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.362.6675&rep=rep1&type
=pdf

