Best Neural Network Approximation by using Bernstein Polynomials
with GRNN Learning Application

Hawraa Abbas Almurieb

Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Hilla, Iraq
Anwar Anwer Hamody

Hudaibiya School, Babylon Education Directorate, , Hilla, Iraq

EWSYES]
Ol Ggizs ¢ el e Bdle .JIgl Cuyit) Ayl OlgaYl @bl (U] eplisdy dgds SIS U
8ol 4580| (el 1B (3 Gy .Yl (30 089 il (§ Buall ligadail] o el e Al
2o o5 Of oSy (@19 ¢ Aman)l O] (po Bl die sy iy 39u Sladaie (Slias (0
s (2 dasll O8l ¢ 63 &b oo Dyl Jalae AV oy dzpd go dyadll Jlgll
pAstid ¢ oyl gl .Sauall il plustl dusas OBLaS Jlslll Hlasl oSay U ¢ dole du i
B9 USE | AkeYl sy slac] an ¢ ML groliyy plasiils elatie JSaw gl Coyx) GRNN dee)l g5

.;.Af,a.ﬂl
1dulidell CileiSl

.M‘ c&f)b.oiw}”)l:u.a cL}\JJ‘ g.,g).a.'l.n cpliéd o 394> Wilddasin ¢ duuas]l 3 A

Abstract

Bernstein polynomials are one of the first and main tools for function approximation. On
the other hand, neural networks have many useful applications in approximation and
other fields as well. In this paper, we study how we benefit from properties of Bernstein
polynomials to define a new version of neural networks, that can be fit approximating
functions in terms of modulus of continuity. Numerically, we use neural networks to
approximate some types of continuous functions. For that purpose, we use GRNN
algorithm to approximate functions uniformly by using Matlab, giving some examples that

confirm good rate approximation.

Keywords:

Neural networks, Bernstein Polynomials, Function Approximation, Modulus of Continuity,

GRNN, Learning.

1. Introduction

In many papers, authors define many formulas of neural networks for purposes of function
approximation. For examples, (1-6) studied the existence of best function approximation in C[a,b] and
Lp spaces by neural networks with several formulas. When a new formula is defined, it should have
the appropriate properties to best fit the target function. Moreover, the degree of that best
approximation is estimated in terms of several criteria, especially modulus of continuity. Now, we
begin with some main definitions about approximation,

Definition 1.1. (7) Let (X, ||*|]]) be a normed space, then the best approximation of x € X, fromY C X,

is yo €Y, that satisfies

lx = yoll = infllx — yll. 1)
yey

The uniform norm (7), is the one that we use here, which is given by
llleo = max|xl, @)
forany x = (x;)j=; € R™
If we consider C[a, b], to be the set of continuous functions on [a, b], then the following norm over
any f € Cla, b] is given by

Iflle = max|FGI,)

Function approximation begun with polynomials by P. L. Chebyshev (8), the problem is to find some
polynomial on [a, b] that minimize

gggggjlf (x) —p()|. 4)

Later, many forms of polynomials were built to get the best approximation as in (4) maag)lf(x) -
asxs

p()|. , see for example (9-11), they approximated continuous
functions with several polynomials, famously, Bernstein polynomials (10). Bernstein introduced his
polynomials that best approximate continuous functions, and later it was improved with modulus of

continuity, for more details, see (7).

Definition 1.2.(7) The general form of Bernstein polynomials is given by

n

B = D £ (2) (D) ek -2, s)

k=0
for0<x<1.

On the other hand, neural networks are universal approximations for any continuous function by
Cybenko (12), he used very primitive formula of neural network in his earliest proof. Until today, one
can find many versions of neural networks among papers (3,13—17). Some defined new activation

functions, while others gave special weights that fit their needs for function approximation.

Few little papers dealt with neural networks via Bernstain polynomials, far away from

approximation approaches. We define a special formula of neural network on [—1,1]¢, as follow

Definition 1.3. For any input x and a weight w, s.t. x,w € [—1,1]¢, define the neural network

d n
N, (x) = Z Z Gii o;((w.x) + b)), (6)
j=0 k=0
where (w.Xx) is the inner product between the vectors w and x, Ci = %f(g), j=

1,....,d, k=0,...,n,and 1;and x; € [-1,1], are the jth component of 1 = (14,...,14) and x =

(x1,...,x4), respectively. The activation function of jth component is given by
n-k
() = %/ (1 —x;)" ", (7)
Set x# to the set of neural networks of the form Nn(x) = ?:022=ocj,iaj((w.x)+
b),)

Definition 1.4. The best neural approximation of f € C4[—1,1]is N, € x, that satisfies

If = Nolleo = i,’é’;”f‘ Nlle 8

Moreover, the degree of best uniform approximation of f € C%[—1,1] from the set x, is

En(f)o = infllf — Nlloo)
Nex
To measure E,(f), then modulus of continuity is there, it gives better degree of approximation
than €. To learn more about modulus of continuity, here is the following definition from (7)

Definition 1.5. For any bounded function f on [a, b] ,the modulus of continuity of f is given by
wr ([a,b]; 6) = sup{lf (x) — fFW)|:x,y € [a,b], |x — y| < &} (10)
2. Auxiliary Lemmas

Now, we need some properties of Bernstein's polynomials to prove our main result. In general,

Bernstein polynomials satisfies the following properties

Lemma 2.1. Properties of Bernstein polynomials (7)

Lo, () a—onk =1

2 B (E) (e <

3. Ford >0,and |§ - x| > §, implies Y- (Z)xk(l — Kk <

4ino

Lemma 2.2. Properties of wy (7)

1

If £ is uniformly continuous then w;(8) — 0 as § — 07

2

If § < 8, than wp(8") < ws(8)
3- wr(nd) <nws(s),forneN

4

wr(A8) < (1 + Dwp(8), for 1> 0.

3.Existence of Best Approximation

This is the main section of the paper, it concludes when and how we find best

approximation with our Bernstein neural network,

3.1. Existence Theorem

Let f € Cd[—l,l], then foranyn € N, with d < n, there exist a neural network of f

d n
N, (f) = 22 Gi o ((w.x) + b)), 1)
j=0k=0
that satisfies
En(f)o < c wi(f,6) (12)

4. Proof of Existence Theorem

Let n € N and d < n, then by (8), (6), (10), Lemma 2.1, and Minkowski Inequality, we have

k ! n—
= a1 = [3 " 100~ () e -

<33 1160 (&) o @
22<‘<f(y,) f<))k'(n. k)uylk(l y])n_k
< Zkzj wr (|yj— %D#!_k)!yjk(l _ yj)n_k

By using A = vn |y - —|and 6= \/_ﬁ in property (3) of Lemma 2.1, then by using Cauchy-shwarz

)

inequality, we get

= a5 0@ D D [+ s = | (=)

= wy (\/%) [1 + \/EZ’(ZJ ‘Yj— %‘ #!_k)!ykj(l - Yj)n—k]
1
2

<o ()2 2, b =lime et @ (2, bt @

_ yj)n_k}”z

a
swf<%) 1+\/EZ%

< cwy (\/%)

By taking maximum over j to both sides, we finish the proofm

5. Function Approximation by Learning Neural Networks

Many algorithms use weighting technique to adjust the neural network to get the desired target. In
this section, we use GRNN (General Regression Neural Networks) algorithm to find a neural
approximation for some different continuous functions to train it closer to the target function. Mean
Square Error (MSE) is the measure of how well the function approximation is. The optimization

problem is to minimize MSE as to reach the target error.

GRNN is an FNN (Feedforward Neural Network) with a radial basis layer and the next linear layer. It
generates a good tool for function approximation. It is simply an input-output with a structure of
Radial Basis Network in the first layer, but with a different input to the transfer function. The Euclidean

distance is applied to the input x and the weight w as follow

1/2

d
lx=wi={ > (5 -w)" |
j=1

where x = (X1, x5, -, xg) and w = (Wy, Wy, -+, Wy).

And then, the result is activated by Gaussian RBF as follow
o(x;) = e /P
Also, set

Sy Y (e G /e

d . —(xi—w)2/p2
Zi=1e (xi-wp?/p

Y(x) =

where p? is the smoothing parameter of the Gaussian kernel (Default 1). Y (x) represents the normal
distribution.

Theoretically, RBF maps an input X to get a weight W, so we could measure how much the function

is the approach to the target by calculating || X — Y||. Thus, the result is trained again in the same
procedure.

6. Experimental Results

One of the most important neural network algorithms for function approximation is the GRNN

algorithm. We introduce some practical results for our algorithm, including function examples, by

using Matlab. In addition, all calculations and figures are done by Matlab too.

6.1. Continuous Exponential Function

We apply GRNN to approximate a continuous exponential function which is of one variable x € [0,1]
y=(x+1)exp(—3x+3)

The following figure shows both the target function and the approximated one using GRNN, and the
MSE is 0.0042

Figure -1 Approximation of y = (x + 1) exp (—3x + 3) by GRNN

6.2. Continuous Periodic Function

We apply GRNN to approximate the function of a continuous periodic function, which is of one

variable x € [0,1]

y = sin(4x)exp(—|5x|)

The following figure shows both the target function and the approximated one using GRNN; the MSE

is 0.0031

Figure-2 Approximation of y = sin(4x)exp(—|5x|) by GRNN

6.3. Santner Function
Another famous function that is used for approximation is the Lim Function (18). It is given by

y = f(x) = e"** cos(3.5mx) ,x € [0,1]
The following figure shows both the target function and the approximated one using GRNN; the MSE

is 1.4637e-05

1
0.8 i
06
04
0.2

0
-02
-04

-06

original function
- available data
GRNN

0.8

{
/
f
;
}
l

-
4 08 08 04 02 0 02 04 06 08 1
X

Figure-3 Approximation of f(x) = e~ 1** cos(3.5mx) by GRNN

6.4. MISE Results

Finally, we collect our results of MSE between output and target of each function in the examples

above with the following table,

Function MSE
y=(x+1Dexp(—3x+3) 0.0042
y = sin(4x)exp(—|5x|) 0.0031
y = e 1**cos(3.5mx) 1.4637e-05

7. Conclusions

This paper includes a special type of neural network that we defined in terms of Bernstein polynomials,
we proved that the uniform approximation exists. Moreover, the degree of best approximation is
concluded. Numerically, we find best approximation for some continuous functions by using GRNN
algorithm and calculate the MSE of each. More improvements and generalizations are possible in this

topic.

8. References

1. Almurieb HA, Bhaya ES. Best neural simultaneous approximation. Indonesian Journal of
Electrical Engineering and Computer Science. 2020 Dec 1;20(3):1584-90.

2. Dingankar A, Phatak D, County B. Simultaneous Approximation with Neural Networks.
2000;(June 2014).

3. Bhaya ES, Sharba ZA. L_p_ approximation by ReLU neural networks. Karbala International
Journal of Modern Science. 2020;6(4):414-9.

4. Lin S, Guo X, Cao F, Xu Z. Approximation by Neural Networks with Scattered Dataq. Applied
Mathematics and Computation [Internet]. 2015;224(June):29-35. Available from:
http://dx.doi.org/10.1016/j.amc.2013.08.014

5. Liu B. Optimal Function Approximation with Relu Neural Networks. 2019;

6. Almurieb HA, Bhaya ES. Monotone approximation by quadratic neural network of functions in
Lp spaces for p<1. Iraqgi Journal of Science. 2020;61(4):870-4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Carothers NL. A Short Course on Approximation Theory. Citeseer; 1998.

Chebyshev PL. Théorie des mécanismes connus sous le nom de parallélogrammes". Mémoires
des Savants étrangers présentés a I’Académie de Saint-Pétersbourg (in French). 1854;7:539—
86.

Cao, F.L., Xiong JY: Steckin-Marchaud-Type Inequality in Connection with Lp Approximation
for Multivariate Bernstein-Durrmeyer Operators. Chinese Contemporary Mathematics.
2001;22(2):137-42.

Bernstein S. Sur L'ordre de la Meilleure Approximation des Fonctions Continues par des
Polynémes de Degré Donné. Hayez, imprimeur des acad{\'e}mies royales. 1912;4.

Steffens K georg. The History of Approximation Theory From Euler to Bernstein.

Cybenko G. Continuous Valued Neural Networks: Approximation Theoretic Results. In:
Computer Science and Statistics: proceedings of the 20th Symposium on the Interface,. 1988.
p. 174-83.

Hornik K., Stinchcombe M. WH. Universal Approximation of an Unknown Mapping and its
Derivatives Using Multilayer Feedforword Networks. Neural Networks. 1990;3(5):551-60.

Chen T, Chen H. Universal Approximation to Nonlinear Operators by Neural Networks with
Arbitrary Activation Functions and Its Application to Dynamical Systems. IEEE Transactions on
Neural Networks. 1995;6(4):911-7.

Suzuki S. Constructive Function Approximation by Three-Layer Artificial Neural Networks.
Neural Networks. 1998;11(6):1049-58.

Wang J, Xu Z. New Study on Neural Networks: The Essential Order of Approximation. Neural
Networks [Internet]. 2010;23(5):618-24. Available from:
http://dx.doi.org/10.1016/j.neunet.2010.01.004

Almurieb HA, Bhaya ES. SoftMax Neural Best Approximation. In: Series, | O P Conference
Science, Materials. 2020.

Lim YB, Sacks J, Studden WJ, Welch WJ. Design and Analysis of Computer Experiments when
the Output is Highly Correlated over the Input Space. Can J Stat. 2002;30(1):109-126.

