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Abstract

Bernstein polynomials are one of the first and main tools for function approximation. On
the other hand, neural networks have many useful applications in approximation and
other fields as well. In this paper, we study how we benefit from properties of Bernstein
polynomials to define a new version of neural networks, that can be fit approximating
functions in terms of modulus of continuity. Numerically, we use neural networks to
approximate some types of continuous functions. For that purpose, we use GRNN
algorithm to approximate functions uniformly by using Matlab, giving some examples that

confirm good rate approximation.
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1. Introduction

In many papers, authors define many formulas of neural networks for purposes of function
approximation. For examples, (1-6) studied the existence of best function approximation in C[a,b] and
Lp spaces by neural networks with several formulas. When a new formula is defined, it should have
the appropriate properties to best fit the target function. Moreover, the degree of that best
approximation is estimated in terms of several criteria, especially modulus of continuity. Now, we
begin with some main definitions about approximation,

Definition 1.1. (7) Let (X, ||*|]]) be a normed space, then the best approximation of x € X, fromY C X,

is yo €Y, that satisfies

lx = yoll = infllx — yll. 1)
yey

The uniform norm (7), is the one that we use here, which is given by
llleo = max|xl, @)
forany x = (x;)j=; € R™
If we consider C[a, b], to be the set of continuous functions on [a, b], then the following norm over
any f € Cla, b] is given by

Iflle = max|FGI, )

Function approximation begun with polynomials by P. L. Chebyshev (8), the problem is to find some
polynomial on [a, b] that minimize

gggggjlf (x) —p()|. 4)

Later, many forms of polynomials were built to get the best approximation as in (4) maag)lf(x) -
asxs

p()|. , see for example (9-11), they approximated continuous
functions with several polynomials, famously, Bernstein polynomials (10). Bernstein introduced his
polynomials that best approximate continuous functions, and later it was improved with modulus of

continuity, for more details, see (7).



Definition 1.2.(7) The general form of Bernstein polynomials is given by

n

B = D £ (2) (D) ek -2, s)

k=0
for0<x<1.

On the other hand, neural networks are universal approximations for any continuous function by
Cybenko (12), he used very primitive formula of neural network in his earliest proof. Until today, one
can find many versions of neural networks among papers (3,13—17). Some defined new activation

functions, while others gave special weights that fit their needs for function approximation.

Few little papers dealt with neural networks via Bernstain polynomials, far away from

approximation approaches. We define a special formula of neural network on [—1,1]¢, as follow

Definition 1.3. For any input x and a weight w, s.t. x,w € [—1,1]¢, define the neural network

d n
N, (x) = Z Z Gii o;((w.x) + b)), (6)
j=0 k=0
where (w.Xx) is the inner product between the vectors w and x, Ci = %f(g), j=

1,....,d, k=0,...,n,and 1;and x; € [-1,1], are the jth component of 1 = (14,...,14) and x =

(x1,...,x4), respectively. The activation function of jth component is given by
n-k
() = %/ (1 —x;)" ", (7)
Set x# to the set of neural networks of the form Nn(x) = ?:022=ocj,iaj((w.x)+
b), )

Definition 1.4. The best neural approximation of f € C4[—1,1]is N, € x, that satisfies

If = Nolleo = i,’é’;”f‘ Nlle 8

Moreover, the degree of best uniform approximation of f € C%[—1,1] from the set x, is



En(f)o = infllf — Nlloo )
Nex
To measure E,(f), then modulus of continuity is there, it gives better degree of approximation
than €. To learn more about modulus of continuity, here is the following definition from (7)

Definition 1.5. For any bounded function f on [a, b] ,the modulus of continuity of f is given by
wr ([a,b]; 6) = sup{lf (x) — fFW)|:x,y € [a,b], |x — y| < &} (10)
2. Auxiliary Lemmas

Now, we need some properties of Bernstein's polynomials to prove our main result. In general,

Bernstein polynomials satisfies the following properties

Lemma 2.1. Properties of Bernstein polynomials (7)

Lo, () a—onk =1

2 B (E ) (e <

3. Ford >0,and |§ - x| > §, implies Y- (Z)xk(l — Kk <

4ino

Lemma 2.2. Properties of wy (7)

1

If £ is uniformly continuous then w;(8) — 0 as § — 07

2

If § < 8, than wp(8") < ws(8)
3- wr(nd) <nws(s),forneN

4

wr(A8) < (1 + Dwp(8), for 1> 0.

3.Existence of Best Approximation

This is the main section of the paper, it concludes when and how we find best

approximation with our Bernstein neural network,

3.1. Existence Theorem



Let f € Cd[—l,l], then foranyn € N, with d < n, there exist a neural network of f

d n
N, (f) = 22 Gi o ((w.x) + b)), 1)
j=0k=0
that satisfies
En(f)o < c wi(f,6) (12)

4. Proof of Existence Theorem

Let n € N and d < n, then by (8), (6), (10), Lemma 2.1, and Minkowski Inequality, we have

k ! n—
= a1 = [3 " 100~ () e -

<33 1160 (&) o @
22<‘<f(y,) f< ))k'(n. k)uylk(l y])n_k
< Zkzj wr (|yj— %D#!_k)!yjk(l _ yj)n_k

By using A = vn |y - —|and 6= \/_ﬁ in property (3) of Lemma 2.1, then by using Cauchy-shwarz

)

inequality, we get

= a5 0@ D D [+ s = | (=)

= wy (\/%) [1 + \/EZ’(ZJ ‘Yj— %‘ #!_k)!ykj(l - Yj)n—k]
1
2

<o ()2 2, b =lime et @ (2, bt @

_ yj)n_k}”z



a
swf<%) 1+\/EZ%

< cwy (\/%)

By taking maximum over j to both sides, we finish the proofm

5. Function Approximation by Learning Neural Networks

Many algorithms use weighting technique to adjust the neural network to get the desired target. In
this section, we use GRNN (General Regression Neural Networks) algorithm to find a neural
approximation for some different continuous functions to train it closer to the target function. Mean
Square Error (MSE) is the measure of how well the function approximation is. The optimization

problem is to minimize MSE as to reach the target error.

GRNN is an FNN (Feedforward Neural Network) with a radial basis layer and the next linear layer. It
generates a good tool for function approximation. It is simply an input-output with a structure of
Radial Basis Network in the first layer, but with a different input to the transfer function. The Euclidean

distance is applied to the input x and the weight w as follow

1/2

d
lx=wi={ > (5 -w)" |
j=1

where x = (X1, x5, -, xg) and w = (Wy, Wy, -+, Wy).

And then, the result is activated by Gaussian RBF as follow
o(x;) = e /P
Also, set

Sy Y (e G /e

d . —(xi—w)2/p2
Zi=1e (xi-wp?/p

Y(x) =



where p? is the smoothing parameter of the Gaussian kernel (Default 1). Y (x) represents the normal
distribution.

Theoretically, RBF maps an input X to get a weight W, so we could measure how much the function

is the approach to the target by calculating || X — Y||. Thus, the result is trained again in the same
procedure.

6. Experimental Results

One of the most important neural network algorithms for function approximation is the GRNN

algorithm. We introduce some practical results for our algorithm, including function examples, by

using Matlab. In addition, all calculations and figures are done by Matlab too.

6.1. Continuous Exponential Function

We apply GRNN to approximate a continuous exponential function which is of one variable x € [0,1]
y=(x+1)exp(—3x+3)

The following figure shows both the target function and the approximated one using GRNN, and the
MSE is 0.0042

Figure -1 Approximation of y = (x + 1) exp (—3x + 3) by GRNN

6.2. Continuous Periodic Function



We apply GRNN to approximate the function of a continuous periodic function, which is of one

variable x € [0,1]

y = sin(4x)exp(—|5x|)

The following figure shows both the target function and the approximated one using GRNN; the MSE

is 0.0031

Figure-2 Approximation of y = sin(4x)exp(—|5x|) by GRNN

6.3. Santner Function
Another famous function that is used for approximation is the Lim Function (18). It is given by

y = f(x) = e"** cos(3.5mx) ,x € [0,1]
The following figure shows both the target function and the approximated one using GRNN; the MSE

is 1.4637e-05
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Figure-3 Approximation of f(x) = e~ 1** cos(3.5mx) by GRNN

6.4. MISE Results

Finally, we collect our results of MSE between output and target of each function in the examples

above with the following table,

Function MSE
y=(x+1Dexp(—3x+3) 0.0042
y = sin(4x)exp(—|5x|) 0.0031
y = e 1**cos(3.5mx) 1.4637e-05

7. Conclusions

This paper includes a special type of neural network that we defined in terms of Bernstein polynomials,
we proved that the uniform approximation exists. Moreover, the degree of best approximation is
concluded. Numerically, we find best approximation for some continuous functions by using GRNN
algorithm and calculate the MSE of each. More improvements and generalizations are possible in this

topic.
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