
Best Neural Network Approximation by using Bernstein Polynomials  

with GRNN Learning Application 

Hawraa Abbas Almurieb 

Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Hilla, Iraq 

Anwar Anwer Hamody 

 Hudaibiya School, Babylon Education Directorate, , Hilla, Iraq 

 

  الخلاصة  

الشᘘᜓات   تحتوي   ، ذلك   ᣢع علاوة  الدوال.  لتقᗫᖁب  الرئᛳسᘭة  الأدوات  أهم  إحدى  برᙏشتاين  حدود  ات  ᢕᣂتعد كث

ᢝ هذا الᘘحث، إمᜓانᘭة الاستفادة  
ᡧᣚ ه من المجالات. ندرس ᢕᣂب وغᗫᖁالتق ᢝ

ᡧᣚ دةᘭقات المفᘭد من التطبᘌالعد ᣢة عᘭᙫالعص

ᘌ ᢝمكن أن تتلاءم مع  من خصائص متعددات حدود برᙏشتاين لتعᗫᖁف صᘭغة جدᘌدة من ا  ᡨᣎة ، والᘭᙫᜓات العصᘘلش

تقديرات    ᢝᣦ ةᘭᙫالعص الشᘘᜓات   ، أخرى  ناحᘭة  من  الاستمرارᗫة.  معامل  ᗷدلالة  تقᗫᖁب  درجة  مع  التقᘭᙫᗫᖁة  الدوال 

، ᙏستخدم   الغرض  لهذا  العددي.  التقᗫᖁب  ᗷاستخدام  الدوال كشᘘᜓات عصᘭᙫة  اعتᘘار  لذلك ᘌمكن   ، عامة  تقᘭᙫᗫᖁة 

ᢝ تؤكد جودة  لتقGRNN   ᖁخوارزمᘭة   ᡨᣎعض الأمثلة الᗷ استخدام برنامج الماتلاب ، مع إعطاءᗷ شᜓل منتظمᚽ ب الدوالᗫ

 التقᗫᖁب. 

  الᝣلمات المفتاحᘭة: 

، معᘭار الاستمرارᗫة، التعلم.  ᢝᣠب الداᗫᖁشتاين، التقᙏ ᢕᣂة ، متعددات حدود بᘭᙫᜓات العصᘘالش  

 

 

 

 

 



Abstract  

Bernstein polynomials are one of the first and main tools for function approximation. On 

the other hand, neural networks have many useful applications in approximation and 

other fields as well. In this paper, we study how we benefit from properties of Bernstein 

polynomials to define a new version of neural networks, that can be fit approximating 

functions in terms of modulus of continuity. Numerically, we use neural networks to 

approximate some types of continuous functions. For that purpose, we use GRNN 

algorithm to approximate functions uniformly by using Matlab, giving some examples that 

confirm good rate approximation.   

Keywords:  

Neural networks, Bernstein Polynomials, Function Approximation, Modulus of Continuity, 

GRNN, Learning. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

 In many papers, authors define many formulas of neural networks for purposes of function 

approximation. For examples, (1–6) studied the existence of best function approximation in C[a,b] and 

Lp spaces by neural networks with several formulas. When a new formula is defined, it should have 

the appropriate properties to best fit the target function. Moreover, the degree of that best 

approximation is estimated in terms of several criteria, especially modulus of continuity. Now, we 

begin with some main definitions about approximation, 

Definition 1.1. (7) Let (𝑋, ‖∙‖) be a normed space, then the best approximation of 𝑥 ∈ 𝑋, from 𝑌 ⊆ 𝑋, 

is 𝑦଴ ∈ 𝑌, that satisfies 

‖𝑥 − 𝑦଴‖ = 𝑖𝑛𝑓
௬∈௒

‖𝑥 − 𝑦‖.                                                        (1) 

    The uniform norm (7), is the one that we use here, which is given by 

‖𝒙‖ஶ = max
ଵஸ௜ஸ௡

|𝑥௜|,                                                             (2) 

for any 𝒙 = (𝑥௜)௜ୀଵ
௡ ∈ 𝑅௡. 

    If we consider 𝐶[𝑎, 𝑏], to be the set of continuous functions on [𝑎, 𝑏], then the following norm over 

any 𝑓 ∈ 𝐶[𝑎, 𝑏] is given by 

‖𝑓‖ஶ = 𝑚𝑎𝑥
௔ஸ௫ஸ௕

|𝑓(𝑥)|,                                                        (3) 

    Function approximation begun with polynomials by P. L. Chebyshev (8), the problem is to find some 

polynomial on [𝑎, 𝑏] that minimize 

𝑚𝑎𝑥
௔ஸ௫ஸ௕

|𝑓(𝑥) − 𝑝(𝑥)|.                                                        (4) 

    Later, many forms of polynomials were built to get the best approximation as in (4) 𝑚𝑎𝑥
௔ஸ௫ஸ௕

|𝑓(𝑥) −

𝑝(𝑥)|.                                                        , see for example (9–11), they approximated continuous 

functions with several polynomials, famously, Bernstein polynomials (10). Bernstein introduced his 

polynomials that best approximate continuous functions, and later it was improved with modulus of 

continuity, for more details, see (7).  



Definition 1.2.(7) The general form of Bernstein polynomials is given by 

൫𝐵௡(𝑓)൯(𝑥) = ෍ 𝑓 ൬
𝑘

𝑛
൰ ቀ

𝑛
𝑘

ቁ 𝑥௞(1 − 𝑥)௡ି௞

௡

௞ୀ଴

,                              (5) 

for 0 ≤ 𝑥 ≤ 1.  

    On the other hand, neural networks are universal approximations for any continuous function by 

Cybenko (12), he used very primitive formula of neural network in his earliest proof. Until today, one 

can find many versions of neural networks among papers (3,13–17).  Some defined new activation 

functions, while others gave special weights that fit their needs for function approximation. 

    Few little papers dealt with neural networks via Bernstain polynomials, far away from 

approximation approaches. We define a special formula of neural network on [−1,1]ௗ, as follow 

Definition 1.3. For any input 𝒙 and a weight 𝒘, s.t.  𝒙, 𝒘 ∈ [−1,1]ௗ, define the neural network 

𝑁௡(𝒙) =  ෍ ෍ 𝑐௝,௜ 𝜎௝(〈𝒘. 𝒙〉 + 𝑏௝൯

௡

௞ୀ଴

ௗ

௝ୀ଴

 ,                                                (6) 

where 〈𝒘. 𝒙〉 is the inner product between the vectors 𝒘 and 𝒙,  𝑐௝,௜ =
(ିଵ)೔ ௡!

௜!(௡ି௞)!(௞ି௜)! 
𝑓 ቀ

௞

௡
ቁ,  𝑗 =

1, … . . , 𝑑, 𝑘 = 0, … . , 𝑛, and  1௝ and 𝑥௝ ∈ [−1,1], are the 𝑗th component of 𝟏 = (1ଵ, … , 1ௗ) and 𝒙 =

(𝑥ଵ, . . . , 𝑥ௗ), respectively. The activation function of  𝑗th component is given by  

𝜎௝(𝒙) = 𝑥௝
௞൫1௝ − 𝑥௝൯

௡ି௞
,                                                     (7) 

    Set 𝜘 to the set of neural networks of the form 𝑁𝑛(𝒙) =  ∑ ∑ 𝑐௝,௜ 𝜎௝(〈𝒘. 𝒙〉 +௡
௞ୀ଴

ௗ
௝ୀ଴

𝑏௝൯ ,                                                ). 

Definition 1.4. The best neural approximation of 𝒇 ∈ 𝐶ௗ[−1,1] is 𝑁଴ ∈ 𝜘, that satisfies 

‖𝒇 − 𝑁଴‖ஶ = 𝑖𝑛𝑓
ே∈త

‖𝒇 − 𝑁‖ஶ                                    (8) 

Moreover, the degree of best uniform approximation of 𝒇 ∈ 𝐶ௗ[−1,1] from the set 𝜘, is  



𝐸௡(𝒇)ஶ = 𝑖𝑛𝑓
ே∈త

‖𝒇 − 𝑁‖ஶ                                                       (9)  

    To measure 𝐸௡(𝒇)ஶ, then modulus of continuity is there, it gives better degree of approximation 

than 𝜀. To learn more about modulus of continuity, here is the following definition from  (7) 

Definition 1.5. For any bounded function   𝑓 on [𝑎, 𝑏] ,the modulus of continuity of 𝑓 is given by 

𝜔௙ ([𝑎, 𝑏]; 𝛿) = 𝑠𝑢𝑝{|𝑓(𝑥) − 𝑓(𝑦)|: 𝑥, 𝑦 ∈ [𝑎, 𝑏], |𝑥 − 𝑦| ≤ 𝛿}                        (10) 

2. Auxiliary Lemmas 

Now, we need some properties of Bernstein's polynomials to prove our main result. In general, 

Bernstein polynomials satisfies the following properties 

Lemma 2.1. Properties of Bernstein polynomials (7) 

1. ∑ ቀ
𝑛
𝑘

ቁ 𝑥௞௡
௞ୀ଴ (1 − 𝑥)௡ି௞ = 1 

2. ∑ ቀ
௞

௡
− 𝑥ቁ

ଶ
௡
௞ୀ଴ ቀ

𝑛
𝑘

ቁ 𝑥௞(1 − 𝑥)௡ି௞ ≤
ଵ

ସ௡
 

3. For 𝛿 > 0, and ቚ௞

௡
− 𝑥ቚ ≥ 𝛿, implies ∑ ቀ

𝑛
𝑘

ቁ௡
௞ୀ଴ 𝑥௞(1 − 𝑘)௡ି௞ ≤

ଵ

ସ௡ఙ
 

Lemma 2.2. Properties of 𝝎𝒇 (7) 

1- If 𝑓 is uniformly continuous then 𝜔௙(𝛿) ⟼ 0  𝑎𝑠 𝛿 ⟼ 0ା 

2- If 𝛿` < 𝛿, 𝑡ℎ𝑎𝑛 𝜔௙(𝛿`) ≤ 𝜔௙(𝛿) 

3-  𝜔௙(𝑛𝛿) ≤ 𝑛 𝜔௙(𝛿), for 𝑛 ∈ 𝑁 

4- 𝜔௙(𝜆𝛿) ≤ (1 + 𝜆)𝜔௙(𝛿), 𝑓𝑜𝑟 𝜆 > 0. 

3.Existence of Best Approximation 

This is the main section of the paper, it concludes when and how we find best 

approximation with our Bernstein neural network, 

3.1. Existence Theorem 



Let 𝒇 ∈ 𝐶ௗ[−1,1], then for any 𝑛 ∈ 𝑁, with 𝑑 ≤ 𝑛 , there exist a neural network of 𝒇 

𝑁௡(𝒇) =  ෍ ෍ 𝑐௝,௜  𝜎௝(〈𝒘. 𝒙〉 + 𝑏௝൯

௡

௞ୀ଴

ௗ

௝ୀ଴

 ,                                        (11) 

that satisfies 

𝐸௡(𝒇)ஶ ≤ 𝑐 𝜔௞(𝒇, 𝛿)                                                (12) 

4. Proof of Existence Theorem 

Let  𝑛 ∈ 𝞜 and 𝑑 ≤ 𝑛, then by (8), (6), (10), Lemma 2.1, and Minkowski Inequality, we have 

ห𝑓 − 𝑁௡,ௗ(𝑓)ห = ቤ෍ ෍ 𝑓൫𝑦௝൯ − 𝑓 ൬
𝑘

𝑛
൰

𝑛!

𝑘! (𝑛 − 𝑘)!
𝑦௝

௞൫1 − 𝑦௝൯
௡ି௞

௝௞
ቤ 

≤ ෍ ෍ ቤ𝑓൫𝑦௝൯ − 𝑓 ൬
𝑘

𝑛
൰

𝑛!

𝑘! (𝑛 − 𝑘)!
𝑦௝

௞

(1 − 𝑦௝)௡ି௞ቤ
௝௞

 

≤ ෍ ෍ ቆอ൭𝑓൫𝑦௝൯ − 𝑓 ൬
𝑘

𝑛
൰൱

𝑛!

𝑘! (𝑛 − 𝑘)!
𝑦௝

௞൫1 − 𝑦௝൯
௡ି௞

อቇ

௝௞

 

≤ ෍ ෍ 𝜔௙ ൬ฬ𝑦௝ି

𝑘

𝑛
ฬ൰

௝௞

𝑛!

𝑘! (𝑛 − 𝑘)!
𝑦௝

௞(1 − 𝑦௝)௡ି௞ 

By using 𝜆 = √𝑛 ቚ𝑦 −
௞

௡
ቚand 𝛿 =

ଵ

√௡
  in property (3) of Lemma 2.1, then by using Cauchy-shwarz 

inequality, we get 

ห𝑓 − 𝛮௡,ௗ(𝑓)ห ≤ 𝜔௙(
1

√𝑛
) ෍ ෍ ൤1 + √𝑛 ฬ𝑦௝ −

𝑘

𝑛
ฬ൨

௝௞

𝑛!

𝑘! (𝑛 − 𝑘)!
𝑦௞

௝൫1 − 𝑦௝൯
௡ି௞

 

= 𝜔௙ ൬
1

√𝑛
൰ ቈ1 + √𝑛 ෍ ෍ ฬ𝑦௝ି 

𝑘

𝑛
ฬ

௝௞

𝑛!

𝑘! (𝑛 − 𝑘)!
𝑦௞

௝(1 − 𝑦௝)௡ି௞቉ 

≤ 𝜔௙ ൬
1

√𝑛
൰ ቎+√𝑛 ෍ ൜෍ ฬ𝑦௝ −

𝑘

𝑛
ฬ

௞

𝑛!

𝑘! (𝑛 − 𝑘)!
𝑦௝

௞   (1 − 𝑦௝)௡ି௞ൠ

ଵ
ଶ

൜෍ ฬ𝑦௝ −
𝑘

𝑛
ฬ

௞

𝑛!

𝑘! (𝑛 − 𝑘)!
𝑦௝

௞   (1
௝

− 𝑦௝)௡ି௞ൠ
ଵ/ଶ

቏ 



≤ 𝜔௙ ൬
1

√𝑛
൰ ቎1 + √𝑛 ෍

1

4𝑛

ௗ

௝

቏

ଵ
ଶ

 

≤ 𝑐 𝜔௙ ൬
1

√𝑛
൰ 

By taking maximum over j to both sides, we finish the proof∎ 

 

5. Function Approximation by Learning Neural Networks 

Many algorithms use weighting technique to adjust the neural network to get the desired target. In 

this section, we use GRNN (General Regression Neural Networks) algorithm to find a neural 

approximation for some different continuous functions to train it closer to the target function. Mean 

Square Error (MSE) is the measure of how well the function approximation is. The optimization 

problem is to minimize MSE as to reach the target error. 

GRNN is an FNN (Feedforward Neural Network) with a radial basis layer and the next linear layer. It 

generates a good tool for function approximation. It is simply an input-output with a structure of 

Radial Basis Network in the first layer, but with a different input to the transfer function. The Euclidean 

distance is applied to the input 𝒙 and the weight 𝒘 as follow 

‖𝒙 − 𝒘‖ = ቌ෍൫𝑥௝ − 𝑤௝൯
ଶ

ௗ

௝ୀଵ

ቍ

ଵ ଶ⁄

,      

where 𝒙 = (𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥ௗ) and 𝒘 = (𝑤ଵ, 𝑤ଶ, ⋯ , 𝑤ௗ). 

And then, the result is activated by Gaussian RBF as follow 

𝜎(𝑥௜) = 𝑒ି௫೔
మ ఘమ⁄  

Also, set 

𝑌(𝒙) =
∑ 𝑌(𝑥௜)𝑒ି(௫೔ି௪೔)మ/ఘమௗ

௜ୀଵ

∑ 𝑒ି(௫೔ି௪೔)మ/ఘమௗ
௜ୀଵ

, 



where 𝜌ଶ is the smoothing parameter of the Gaussian kernel (Default 1). 𝑌(𝒙) represents the normal 

distribution. 

Theoretically, RBF maps an input 𝑋 to get a weight 𝑊, so we could measure how much the function 

is the approach to the target by calculating ‖𝑿 − 𝒀‖. Thus, the result is trained again in the same 

procedure. 

 

6. Experimental Results 

    One of the most important neural network algorithms for function approximation is the GRNN 

algorithm. We introduce some practical results for our algorithm, including function examples, by 

using Matlab. In addition, all calculations and figures are done by Matlab too.  

6.1. Continuous Exponential Function 

We apply GRNN to approximate a continuous exponential function which is of one variable 𝑥 ∈ [0,1] 

𝑦 = (𝑥 + 1) 𝑒𝑥𝑝 (−3𝑥 + 3) 

The following figure shows both the target function and the approximated one using GRNN, and the 

MSE is 0.0042 

 

Figure -1 Approximation of 𝑦 = (𝑥 + 1) 𝑒𝑥𝑝 (−3𝑥 + 3) by GRNN 

6.2. Continuous Periodic Function 



We apply GRNN to approximate the function of a continuous periodic function, which is of one 

variable 𝑥 ∈ [0,1]  

𝑦 = 𝑠𝑖𝑛(4𝑥)𝑒𝑥𝑝(−|5𝑥|) 

 

The following figure shows both the target function and the approximated one using GRNN; the MSE 

is 0.0031 

 

Figure-2 Approximation of 𝑦 = 𝑠𝑖𝑛(4𝑥)𝑒𝑥𝑝(−|5𝑥|) by GRNN 

6.3. Santner Function 

Another famous function that is used for approximation is the Lim Function (18). It is given by  

𝑦 = 𝑓(𝑥) = 𝑒ିଵ.ସ௫ cos(3.5𝜋𝑥) , 𝑥 ∈ [0,1] 

The following figure shows both the target function and the approximated one using GRNN; the MSE 

is 1.4637e-05 

 

 



Figure-3 Approximation of 𝑓(𝑥) = 𝑒ିଵ.ସ௫ cos(3.5𝜋𝑥) by GRNN 

6.4. MSE Results 

Finally, we collect our results of MSE between output and target of each function in the examples 

above with the following table, 

 

Function MSE 

𝒚 = (𝒙 + 𝟏)𝒆𝒙𝒑(−𝟑𝒙 + 𝟑) 0.0042 

𝒚 = 𝒔𝒊𝒏(𝟒𝒙)𝒆𝒙𝒑(−|𝟓𝒙|) 0.0031 

𝒚 = 𝒆ି𝟏.𝟒𝒙𝒄𝒐𝒔(𝟑. 𝟓𝝅𝒙) 1.4637e-05 

7. Conclusions 

This paper includes a special type of neural network that we defined in terms of Bernstein polynomials, 

we proved that the uniform approximation exists. Moreover, the degree of best approximation is 

concluded. Numerically, we find best approximation for some continuous functions by using GRNN 

algorithm and calculate the MSE of each. More improvements and generalizations are possible in this 

topic.  

8. References 

1.  Almurieb HA, Bhaya ES. Best neural simultaneous approximation. Indonesian Journal of 
Electrical Engineering and Computer Science. 2020 Dec 1;20(3):1584–90.  

2.  Dingankar A, Phatak D, County B. Simultaneous Approximation with Neural Networks. 
2000;(June 2014).  

3.  Bhaya ES, Sharba ZA. L_p_ approximation by ReLU neural networks. Karbala International 
Journal of Modern Science. 2020;6(4):414–9.  

4.  Lin S, Guo X, Cao F, Xu Z. Approximation by Neural Networks with Scattered Dataq. Applied 
Mathematics and Computation [Internet]. 2015;224(June):29–35. Available from: 
http://dx.doi.org/10.1016/j.amc.2013.08.014 

5.  Liu B. Optimal Function Approximation with Relu Neural Networks. 2019;  

6.  Almurieb HA, Bhaya ES. Monotone approximation by quadratic neural network of functions in 
Lp spaces for p<1. Iraqi Journal of Science. 2020;61(4):870–4.  



7.  Carothers NL. A Short Course on Approximation Theory. Citeseer; 1998.  

8.  Chebyshev PL. Théorie des mécanismes connus sous le nom de parallélogrammes". Mémoires 
des Savants étrangers présentés à l’Académie de Saint-Pétersbourg (in French). 1854;7:539–
86.  

9.  Cao, F.L., Xiong JY: Steckin-Marchaud-Type Inequality in Connection with Lp Approximation 
for Multivariate Bernstein-Durrmeyer Operators. Chinese Contemporary Mathematics. 
2001;22(2):137–42.  

10.  Bernstein S. Sur L’ordre de la Meilleure Approximation des Fonctions Continues par des 
Polynômes de Degré Donné. Hayez, imprimeur des acad{\’e}mies royales. 1912;4.  

11.  Steffens K georg. The History of Approximation Theory From Euler to Bernstein.  

12.  Cybenko G. Continuous Valued Neural Networks: Approximation Theoretic Results. In: 
Computer Science and Statistics: proceedings of the 20th Symposium on the Interface,. 1988. 
p. 174–83.  

13.  Hornik K., Stinchcombe M. WH. Universal Approximation of an Unknown Mapping and its 
Derivatives Using Multilayer Feedforword Networks. Neural Networks. 1990;3(5):551–60.  

14.  Chen T, Chen H. Universal Approximation to Nonlinear Operators by Neural Networks with 
Arbitrary Activation Functions and Its Application to Dynamical Systems. IEEE Transactions on 
Neural Networks. 1995;6(4):911–7.  

15.  Suzuki S. Constructive Function Approximation by Three-Layer Artificial Neural Networks. 
Neural Networks. 1998;11(6):1049–58.  

16.  Wang J, Xu Z. New Study on Neural Networks: The Essential Order of Approximation. Neural 
Networks [Internet]. 2010;23(5):618–24. Available from: 
http://dx.doi.org/10.1016/j.neunet.2010.01.004 

17.  Almurieb HA, Bhaya ES. SoftMax Neural Best Approximation. In: Series, I O P Conference 
Science, Materials. 2020.  

18.  Lim YB, Sacks J, Studden WJ, Welch WJ. Design and Analysis of Computer Experiments when 
the Output is Highly Correlated over the Input Space. Can J Stat. 2002;30(1):109–126.  

  


