

Volume 5 | Issue 1

Article 2

Some concepts related to supra soft v- open

Yasmin A. Hamid Department of mathematics/ College of education for women/ Tikrit university/ Iraq

Luma S. Abdalbaqi Department of mathematics/ College of education for women/ Tikrit university/ Iraq

Follow this and additional works at: https://bjeps.alkafeel.edu.iq/journal

Recommended Citation

Hamid, Yasmin A. and Abdalbaqi, Luma S. (2024) "Some concepts related to supra soft v- open," *Al-Bahir Journal for Engineering and Pure Sciences*: Vol. 5: Iss. 1, Article 2. Available at: https://doi.org/10.55810/2313-0083.1065

This Original Study is brought to you for free and open access by Al-Bahir Journal for Engineering and Pure Sciences. It has been accepted for inclusion in Al-Bahir Journal for Engineering and Pure Sciences by an authorized editor of Al-Bahir Journal for Engineering and Pure Sciences. For more information, please contact bjeps@alkafeel.edu.iq.

Some concepts related to supra soft v- open

Conflict of Interest

The authors declare no conflict of interest

Funding

Not found funding

Author Contribution

The research contributed to opening new horizons in topological spaces through a new definition of soft topological spaces, which researchers can use as a reference in their field of work

Data Availability

Not applicable

Some Concepts Related to Supra Soft *e*-**Open**

Yasmin A. Hamid^{*}, Luma S. Abdalbaqi

Department of Mathematics, College of Education for Women, Tikrit University, Iraq

Abstract

This article introduce a new idea in the field of topological space which is supra soft e open set and this concept is another generalization of a soft open set as well as the concept of supra soft e closure is studied. Furthermore, the notion of supra soft e interior is introduced and some properties of this concept were discussed. Finally, the concept of supra soft e exterior is introduced and basic properties of this concept are investigated.

Keywords: Open set, Open, Interior point and closure

1. Introduction and basic concepts

G eneral topology normally considers local properties of spaces, and is closely related to analysis.

The concept of supra topological space was proposed by Mashhour [1] in 1983 as a generalization of the concept of topological space.

Soft set theory is a tool for solving problems with uncertainty, the concept of soft set was first introduced by Molodtsov [2] in 1999.

The concept of soft topology was studied by Karata in 2011 [3].

The concept of supra soft topological space was studied by El-Sheikh and El-latif [4] in 2014 as a generalization of the concept of soft topological space.

The concept of an e- open set was first introduced in 2023 by Sameer and Abdalbaqi [5].

The concept of semi-open set was studied by Levine [6] in 1963 which is a generalization of an open set.

The notion of α – open set was studied in Ref. [7] as a generalization of open set, where $H \subseteq X$ is a α – open iff $H \subseteq (int(cl(int(H))))$.

The idea of β – open set was studied in Ref. [8], where $H \subseteq X$ is a β – open iff $H \subseteq (cl(int(cl(H))))$.

The main contribution in the spaces of supra soft topology are studying by Al-shami in 2019 [9,10] and 2022 [11].

In this paper we introduce and study the concept of supra soft e^- open set another generalization of an open set.

Let *X* be a universal set and \mathscr{C} is a set of parameters. If $\mathscr{S}_{\tilde{\mathscr{C}}}$ is a universal soft set and $\{\mathfrak{F}_{\kappa}\}_{\kappa \in J}$, $\kappa \geq 2$, be a collection of supra soft topologies on $\mathscr{S}_{\tilde{\mathscr{C}}}$ and $\mathscr{S}_{\mathscr{T}} \subseteq \mathscr{S}_{\tilde{\mathscr{C}}}$. Then $\mathscr{S}_{\mathscr{T}}$ is called supra soft e^{-} open set in $\mathscr{S}_{\tilde{\mathscr{C}}}$ if there is $\mathscr{S}_{T} \in \bigcap_{\kappa \in J} \mathfrak{F}_{\kappa}$ such that $\mathscr{S}_{\Phi} \neq \mathscr{S}_{T} \subseteq \mathscr{S}_{\mathscr{T}}$ where $\mathscr{S}_{\mathscr{T}} \neq \mathscr{S}_{\Phi}$ and $\mathscr{S}_{T} = \mathscr{S}_{\Phi}$ where $\mathscr{S}_{\mathscr{T}} = \mathscr{S}_{\Phi}$. The set of all supra soft e^{-} open in $\mathscr{S}_{\tilde{\mathscr{C}}}$ is denoted by $\mathscr{S}_{\mathscr{O}} \mathscr{S}_{\tilde{\mathscr{L}}}$ and $(\mathscr{X}, \mathscr{S}_{\mathscr{O}} \mathscr{S}_{\tilde{\mathscr{L}}}, \mathfrak{C})$ is called supra soft e^{-} space

The complement of a supra soft v- open set is called supra soft v- closed set and the set of all supra soft v- closed is denoted by $\mathcal{S}vC_{\mathcal{F}}$.

2. The main results

Definition (2.1). Let $(\mathscr{X}, \mathscr{S}_{\mathscr{V}}\mathcal{O}_{\mathscr{F}_{\widetilde{\mathscr{X}}}}, \mathscr{E})$ be a supra soft v- space. A supra soft v- closure of $\mathscr{F}_{\mathscr{V}} \subseteq \mathscr{F}_{\widetilde{\mathscr{E}}}$ is denoted by $cl_{\mathscr{I}_{v}}(\mathscr{S}_{\mathscr{V}})$ and defined as the intersection of all supra soft v- closed sets that contains $\mathscr{S}_{\mathscr{V}}$.

Theorem (2.2). $cl_{\mathscr{T}_{v}}(\mathscr{S}_{\mathscr{V}})$ is the smallest supra soft v- closed set that contain $\mathscr{S}_{\mathscr{V}}$.

Proof. An arbitrary intersection of supra soft u-closed sets is a supra soft u-closed, so we get $cl_{\mathscr{P}_u}(\mathscr{S}_{\mathscr{V}})$ is a supra soft u-closed set.

Received 29 March 2024; revised 17 April 2024; accepted 20 April 2024. Available online 31 May 2024

^{*} Corresponding author.

E-mail addresses: yasmin.abdulrahman23@st.tu.edu.iq (Y.A. Hamid), lumahhany1977@tu.edu.iq (L.S. Abdalbaqi).

 $\mathscr{S}_{\mathscr{V}} \tilde{\subseteq} cl_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{V}})$ by the definition of $cl_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{V}})$. Let $\mathscr{S}_{\mathscr{V}}^{*}$ be a supra soft v- closed set that contain $\mathscr{S}_{\mathscr{V}}$. Then $\mathscr{S}_{\mathscr{V}}^{*}$ includes the intersection of all supra soft v- closed sets that contains $\mathscr{S}_{\mathscr{V}}$. Hence, $cl_{\mathscr{T}_{v}}(\mathscr{S}_{\mathscr{V}})\tilde{\subseteq}\mathscr{S}_{\mathscr{V}}^{*}$. This completes the proof.

Corollary (2.3). Suppose that $\mathscr{S}_{\mathscr{V}} \subseteq \mathscr{S}_{\widetilde{\mathscr{C}}}$, then $\mathscr{S}_{\mathscr{V}}$ is a supra soft v- closed if and only if $\mathscr{S}_{\mathscr{V}} = cl_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}})$.

Theorem (2.4). If $(\mathscr{X}, \mathscr{S}_{\nu}\mathcal{O}_{\mathscr{F}_{*}}, \mathscr{E})$ is supra soft ν -space and $\mathscr{S}_{\mathscr{V}_{1}}, \mathscr{S}_{\mathscr{V}_{2}}\tilde{\subseteq}\mathscr{S}_{\mathscr{F}_{*}}$. Then

1. $\mathscr{T}_{\mathscr{V}_{1}} \subseteq \mathscr{T}_{\mathscr{V}_{2}}$, then $cl_{\mathscr{T}_{e}}(\mathscr{T}_{\mathscr{V}_{1}}) \subseteq cl_{\mathscr{T}_{e}}(\mathscr{T}_{\mathscr{V}_{2}})$. 2. $cl_{\mathscr{T}_{e}}(\mathscr{T}_{\mathscr{V}_{1}} \bigcup \mathscr{T}_{\mathscr{V}_{2}}) = cl_{\mathscr{T}_{e}}(\mathscr{T}_{\mathscr{V}_{1}}) \bigcup cl_{\mathscr{T}_{e}}(\mathscr{T}_{\mathscr{V}_{2}})$. 3. $cl_{\mathscr{T}_{e}}(\mathscr{T}_{\mathscr{V}_{1}} \bigcap \mathscr{T}_{\mathscr{V}_{2}}) \subseteq cl_{\mathscr{T}_{e}}(\mathscr{T}_{\mathscr{V}_{1}}) \bigcap cl_{\mathscr{T}_{e}}(\mathscr{T}_{\mathscr{V}_{2}})$. 4. $cl_{\mathscr{T}_{e}}(cl_{\mathscr{T}_{e}}(\mathscr{T}_{\mathscr{V}})) = cl_{\mathscr{T}_{e}}(\mathscr{T}_{\mathscr{V}})$, for any $\mathscr{T}_{\mathscr{V}} \subseteq \mathscr{T}_{\widetilde{\mathscr{T}}}$. 5. $cl_{\mathscr{T}_{e}}(\mathscr{T}_{\phi}) = \mathscr{T}_{\phi}$ and $cl_{\mathscr{T}_{e}}(\mathscr{T}_{\widetilde{\mathscr{T}}}) = \mathscr{T}_{\widetilde{\mathscr{L}}}$.

Proof.

- Since cl_{𝒴e}(𝒴_𝒴) is a supra soft *ν*− closed set that contain 𝒴_𝒴 and 𝒴_𝒴⊆𝒴_𝒴, then cl_{𝒴e}(𝒴_𝒴) is a supra soft *ν*− closed set that contain 𝒴_𝒴, but cl_{𝒴e}(𝒴_𝒴) is the smallest supra soft *ν*− closed that contain 𝒴_𝒴, thus cl_{𝒴e}(𝒴_𝒴) ⊆cl_{𝒴e}(𝒴_𝒴).
- 2. Since $\mathscr{T}_{\mathscr{V}_{1}} \subseteq \mathscr{T}_{\mathscr{V}_{1}} \bigcup \mathscr{T}_{\mathscr{V}_{2}}$ and $\mathscr{T}_{\mathscr{V}_{2}} \subseteq \mathscr{T}_{\mathscr{V}_{1}} \bigcup \mathscr{T}_{\mathscr{V}_{2}}$, then by [1] we get, $cl_{\mathscr{I}_{v}}(\mathscr{T}_{\mathscr{V}_{1}}) \subseteq cl_{\mathscr{I}_{v}}(\mathscr{T}_{\mathscr{V}_{1}}) \subseteq \mathscr{T}_{\mathscr{V}_{2}})$ and $cl_{\mathscr{I}_{v}}(\mathscr{T}_{\mathscr{V}_{2}}) \subseteq cl_{\mathscr{I}_{v}}(\mathscr{T}_{\mathscr{V}_{1}}) \subseteq \mathscr{T}_{\mathscr{V}_{2}})$. So, we have $cl_{\mathscr{I}_{v}}(\mathscr{T}_{\mathscr{V}_{1}}) \bigcup cl_{\mathscr{I}_{v}}(\mathscr{T}_{\mathscr{V}_{2}}) \subseteq cl_{\mathscr{I}_{v}}(\mathscr{T}_{\mathscr{V}_{1}}) \subseteq \mathscr{T}_{\mathscr{V}_{2}})$. Now, $cl_{\mathscr{I}_{v}}(\mathscr{T}_{\mathscr{V}_{1}})$, $cl_{\mathscr{I}_{v}}(\mathscr{T}_{\mathscr{V}_{2}})$ are supra soft u-
- closed sets that contains $\mathscr{S}_{\mathscr{V}_1}, \mathscr{S}_{\mathscr{V}_2}$ respectively, then $cl_{\mathscr{S}_{\ell}}(\mathscr{S}_{\mathscr{V}_1}) \bigcup cl_{\mathscr{S}_{\ell}}(\mathscr{S}_{\mathscr{V}_2})$ is a supra soft eclosed set that contains $\mathscr{S}_{\mathscr{V}_1} \bigcup \mathscr{S}_{\mathscr{V}_2}$, but $cl_{\mathscr{S}_{\ell}}(\mathscr{S}_{\mathscr{V}_1} \bigcup \mathscr{S}_{\mathscr{V}_2})$ is the smallest supra soft eclosed set that contain $\mathscr{S}_{\mathscr{V}_1} \bigcup \mathscr{S}_{\mathscr{V}_2}$, thus $cl_{\mathscr{S}_{\ell}}(\mathscr{S}_{\mathscr{V}_1} \bigcup \mathscr{S}_{\mathscr{V}_2}) \subseteq cl_{\mathscr{S}_{\ell}}(\mathscr{S}_{\mathscr{V}_1}) \bigcup cl_{\mathscr{S}_{\ell}}(\mathscr{S}_{\mathscr{V}_2})$. This is completes the proof.
- 3. Since $\mathscr{G}_{\mathscr{V}_{1}} \cap \mathscr{G}_{\mathscr{V}_{2}} \subseteq \mathscr{G}_{\mathscr{V}_{1}} \text{ and } \mathscr{G}_{\mathscr{V}_{1}} \cap \mathscr{G}_{\mathscr{V}_{2}} \subseteq \mathscr{G}_{\mathscr{V}_{2}}$, then by [1] we get, $cl_{\mathscr{I}_{v}}(\mathscr{G}_{\mathscr{V}_{1}} \cap \mathscr{G}_{\mathscr{V}_{2}}) \subseteq cl_{\mathscr{I}_{v}}(\mathscr{G}_{\mathscr{V}_{1}})$ and $cl_{\mathscr{I}_{v}}(\mathscr{G}_{\mathscr{V}_{1}} \cap \mathscr{G}_{\mathscr{V}_{2}}) \subseteq cl_{\mathscr{I}_{v}}(\mathscr{G}_{\mathscr{V}_{2}})$. So, we have $cl_{\mathscr{I}_{v}}(\mathscr{G}_{\mathscr{V}_{1}} \cap \mathscr{G}_{\mathscr{V}_{2}}) \subseteq cl_{\mathscr{I}_{v}}(\mathscr{G}_{\mathscr{V}_{1}}) \cap cl_{\mathscr{I}_{v}}(\mathscr{G}_{\mathscr{V}_{2}})$.
- 4. Since cl_{𝔅𝔅}(cl_{𝔅𝔅}(𝔅 𝔅)) is a supra soft *ν*− closed set that contain cl_{𝔅𝔅}(𝔅 𝔅) and 𝔅 𝔅 ⊆cl_{𝔅𝔅}(𝔅 𝔅), then cl_{𝔅𝔅}(𝔅 𝔅)) is a supra soft *ν*− closed that contain 𝔅 𝔅. But cl_{𝔅𝔅}(𝔅) is the smallest supra soft *ν*− closed that contain 𝔅 𝔅. But cl_{𝔅𝔅}(𝔅) is the smallest supra soft *ν*− closed that contain 𝔅 𝔅. Thus cl_{𝔅𝔅}(𝔅 𝔅) ⊆cl_{𝔅𝔅}(cl_{𝔅𝔅}(𝔅 𝔅)). Clearly cl_{𝔅𝔅}(𝔅 𝔅)) ⊆cl_{𝔅𝔅}(𝔅 𝔅). Consequentially, cl_{𝔅𝔅}(cl_{𝔅𝔅}(𝔅 𝔅)) = cl_{𝔅𝔅}(𝔅 𝔅).
 5. Direct.

Definition (2.5). Let $(\mathscr{X}, \mathscr{S}_{\mathscr{V}}\mathcal{O}_{\mathscr{F}_{\mathscr{I}}}, \mathscr{E})$ be a supra soft \mathscr{V} -space and $\mathscr{S}_{\mathscr{V}} \subseteq \mathscr{S}_{\mathscr{I}}$. A point $d \in \mathscr{X}$ is a supra

soft v- limit point of $\mathscr{S}_{\mathscr{V}}$ if $(\mathscr{S}_{\mathscr{M}} - \mathscr{S}_{\mathscr{A}})$ $\tilde{\cap} \mathscr{S}_{\mathscr{V}} \neq \mathscr{S}_{\phi} \ \forall \mathscr{S}_{\mathscr{M}} \in \mathscr{S}_{v} \mathcal{O}_{\mathscr{S}_{\mathscr{V}}}$ containing \mathscr{A} . The set of all supra soft v- limit points of $\mathscr{S}_{\mathscr{V}}$ is denoted by $D_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{V}})$.

Theorem (2.6). Let $\mathscr{S}_{\mathscr{V}} \subseteq \mathscr{S}_{\mathscr{E}}$. Then $\mathscr{S}_{\mathscr{V}}$ is supra soft v- closed if and only if $D_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{V}}) \subseteq \mathscr{S}_{\mathscr{V}}$.

Proof. Assume $\mathscr{S}_{\mathscr{V}}$ is supra soft ι - closed and $d \in D_{\mathscr{S}_{\mathscr{C}}}(\mathscr{S}_{\mathscr{V}})$. If $d \notin \mathscr{S}_{\mathscr{V}}$, then $d \in \mathscr{S}_{\mathscr{V}}^{c}$, but $\mathscr{S}_{\mathscr{V}}^{c} \in \mathscr{S}_{\mathscr{V}} O_{\mathscr{S}_{\widetilde{\mathscr{U}}}}$, then $(\mathscr{S}_{\mathscr{V}}^{c} - \mathscr{S}_{\mathscr{U}}) \cap \mathscr{S}_{\mathscr{V}} = \mathscr{S}_{\phi}$, which implies that $d \notin D_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}})$ contradiction. Hence $d \in \mathscr{S}_{\mathscr{V}}$ and $D_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}}) \subseteq \mathscr{S}_{\mathscr{V}}$.

Conversely: suppose $D_{\mathscr{F}_{\nu}}(\mathscr{S}_{\mathscr{V}}) \subseteq \mathscr{S}_{\mathscr{V}}$. To prove $\mathscr{S}_{\mathscr{V}}$ is supra soft v- closed, we must prove $\mathscr{S}_{\mathscr{V}}^{c} \in \mathscr{S}_{v} \mathcal{O}_{\mathscr{F}_{k}}$. Now, let $d \in \mathscr{S}_{\mathscr{V}}^{c}$, then $d \notin \mathscr{S}_{\mathscr{V}}$, hence $d \notin D_{\mathscr{F}_{\nu}}(\mathscr{S}_{\mathscr{V}})$, thus $\exists \mathscr{S}_{\mathscr{M}} \in \mathscr{S}_{v} \mathcal{O}_{\mathscr{F}_{k}}$ containing d s.t $(\mathscr{S}_{\mathscr{M}} - \mathscr{S}_{d}) \cap \mathscr{S}_{\mathscr{V}} = \mathscr{S}_{\phi}$.

Thus $\mathscr{S}_{\mathscr{M}} \cap \mathscr{S}_{\mathscr{V}} = \mathscr{S}_{\phi}$ since $\mathscr{A} \notin \mathscr{S}_{\mathscr{V}}$. Consequentially, $\mathscr{S}_{\mathscr{M}} \subseteq \mathscr{S}_{\mathscr{V}}^{c}$. This completes the proof.

Theorem (2.7). Let $\mathscr{S}_{\mathscr{V}} \subseteq \mathscr{S}_{\widetilde{\mathscr{E}}}$. Then $D_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}})$ is a supra soft v- closed.

Proof. To prove $D_{\mathscr{J}_{e}}(\mathscr{S}_{\mathscr{V}})$ is a supra soft v- closed, we must prove $D_{\mathscr{J}_{e}}(D_{\mathscr{J}_{v}}(\mathscr{S}_{\mathscr{V}}))\subseteq D_{\mathscr{J}_{v}}(\mathscr{S}_{\mathscr{V}})$. Let $\mathscr{A} \in D_{\mathscr{J}_{e}}(D_{\mathscr{J}_{e}}(\mathscr{S}_{\mathscr{V}}))$. Then \mathscr{A} is a supra soft v - limit point of $D_{\mathscr{J}_{v}}(\mathscr{S}_{\mathscr{V}})$. Hence $(\mathscr{S}_{\mathscr{M}} - \mathscr{S}_{\mathscr{A}}) \cap D_{\mathscr{J}_{v}}(\mathscr{S}_{\mathscr{V}}) \neq \phi \ \forall \mathscr{S}_{\mathscr{M}} \in \mathscr{S}_{v} \mathcal{O}_{\mathscr{J}_{v}}$ containing \mathscr{A} , thus $(\mathscr{S}_{\mathscr{M}} - \mathscr{S}_{\mathscr{A}}) \cap \mathscr{S}_{\mathscr{V}} \neq \mathscr{S}_{\phi}$ $\forall \mathscr{S}_{\mathscr{M}} \in \mathscr{S}_{v} \mathcal{O}_{\mathscr{J}_{v}}$ containing \mathscr{A} , which implies \mathscr{A} is a supra soft v- limit point of $\mathscr{S}_{\mathscr{V}}$ that is $\mathscr{A} \in D_{\mathscr{J}_{v}}(\mathscr{S}_{\mathscr{V}})$. Therefore $D_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{V}})$ is a supra soft v- closed.

Theorem (2.8). If $\mathscr{S}_{\mathscr{T}} \subseteq \mathscr{S}_{\mathscr{T}}$. Then $\mathscr{S}_{\mathscr{T}} \bigcup D_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{T}})$ is a supra soft v- closed.

Proof. To prove $\mathscr{S}_{\mathscr{V}} \bigcup D_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{V}})$ is a supra soft vclosed, we must prove $(\mathscr{S}_{\mathscr{V}} \bigcup D_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{V}}))^{c}$ is a supra soft v- open.

Let $d \in (\mathscr{S}_{\mathscr{V}} \cup D_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}}))^{c}$. Then $\notin \mathscr{S}_{\mathscr{V}} \cup D_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}})$, thus $d \notin \mathscr{S}_{\mathscr{V}}$ and $d \notin D_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}})$. This implies that there is $\mathscr{S}_{\mathscr{M}} \in \mathscr{S}_{\mathscr{V}} O_{\mathscr{S}_{\widetilde{\mathcal{V}}}}$ containing d such that $(\mathscr{S}_{\mathscr{M}} - \mathscr{S}_{\mathscr{A}})$ $\tilde{\bigcap} \mathscr{S}_{\mathscr{V}} = \mathscr{S}_{\phi}$, but $d \notin \mathscr{S}_{\mathscr{V}}$, then $\mathscr{S}_{\mathscr{M}} \cap \mathscr{S}_{\mathscr{V}} = \mathscr{S}_{\phi}$. We claim that $\mathscr{S}_{\mathscr{M}} \cap D_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{V}}) = \mathscr{S}_{\phi}$. Let $z \in \mathscr{S}_{\mathscr{M}}$, since $\mathscr{S}_{\mathscr{M}} \cap \mathscr{S}_{\mathscr{V}} = \mathscr{S}_{\phi}$, then $(\mathscr{S}_{\mathscr{M}} - \mathscr{S}_{z}) \cap \mathscr{S}_{\mathscr{V}} = \mathscr{S}_{\phi}$, hence $z \notin D_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{V}})$. Thus $\mathscr{S}_{\mathscr{M}} \cap D_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{V}}) = \mathscr{S}_{\phi}$. Now, $\mathscr{S}_{\mathscr{M}} \cap [\mathscr{S}_{\mathscr{V}} \cup D_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{V}})] = [\mathscr{S}_{\mathscr{M}} \cap \mathscr{V}] \cup [\mathscr{S}_{\mathscr{M}} \cap D_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{V}})] = \mathscr{S}_{\phi}$. Then $\mathscr{S}_{\mathscr{M}} \subseteq [\mathscr{S}_{\mathscr{V}} \cup D_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{V}})]^{c}$. Hence proved.

Theorem (2.9). $cl_{\mathscr{G}_{\ell}}(\mathscr{G}_{\mathscr{V}}) = \mathscr{G}_{\mathscr{V}} \bigcup D_{\mathscr{G}_{\ell}}(\mathscr{G}_{\mathscr{V}})$ for any $\mathscr{G}_{\mathscr{V}} \subseteq \mathscr{G}_{\mathscr{G}}$.

Proof. From Theorem (2.8), we have $\mathscr{S}_{\mathscr{V}}[D_{\mathscr{T}_{v}}(\mathscr{S}_{\mathscr{V}})]$ is a supra soft v- closed. Since $\mathscr{S}_{\mathscr{T}} \subseteq \mathscr{S}_{\mathscr{T}} (D_{\mathscr{T}} (\mathscr{S}_{\mathscr{T}}), \text{ but by Theorem (2.2), we}$ have $cl_{\mathscr{Y}_{v}}(\mathscr{S}_{\mathscr{V}})$ is the smallest supra soft v- closed that contain Sv. Then $cl_{\mathscr{S}_{w}}(\mathscr{S}_{\mathscr{V}})\tilde{\subseteq}$ $\mathcal{S}_{\mathcal{V}}[D_{\mathcal{S}_{\mathcal{V}}}(\mathcal{S}_{\mathcal{V}}).$ То prove $\mathscr{S}_{\mathscr{V}} \widetilde{\bigcup} D_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}}) \widetilde{\subseteq} cl_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}}).$ Since $\mathscr{S}_{\mathscr{V}} \widetilde{\subseteq} cl_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}}),$ then it only remains to prove $D_{\mathscr{G}_{\mathscr{A}}}(\mathscr{G}_{\mathscr{V}}) \widetilde{\subseteq} cl_{\mathscr{G}_{\mathscr{A}}}(\mathscr{G}_{\mathscr{V}})$, that is we must prove $D_{\mathcal{S}_{v}}(\mathcal{S}_{\mathcal{V}})\widetilde{\subseteq} \widetilde{\bigcap} \{\mathcal{S}_{\mathcal{V}_{i}} : \mathcal{S}_{\mathcal{V}_{i}} \text{ is }$ supra soft v- closed that contains $\mathscr{S}_{\mathscr{V}}$ }. Let $d \in D_{\mathcal{G}_{\mathcal{V}}}(\mathcal{G}_{\mathcal{V}})$. Then $(\mathcal{G}_{\mathcal{M}} - \mathcal{G}_{d}) \cap \mathcal{G}_{\mathcal{V}} \neq \mathcal{G}_{\phi}$ $\forall \mathscr{S}_{\mathscr{M}} \in \mathscr{S}_{\mathscr{V}} O_{\mathscr{S}_{\mathscr{I}}} \text{ containing } \mathscr{A}. \text{ Hence } (\mathscr{S}_{\mathscr{M}} - \mathscr{S}_{\mathscr{A}})$ $\tilde{\bigcap} \mathscr{S}_{\mathscr{V}_i} \neq \mathscr{S}_{\phi} \ \forall \mathscr{S}_{\mathscr{M}} \in \mathscr{S}_{v} \mathcal{O}_{\mathscr{S}_{\widetilde{x}}} \text{ containing } \mathscr{A}, \ \forall i \in \mathrm{I}.$ Thus $d \in D_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{V}_{i}})$. But $\mathscr{S}_{\mathscr{V}_{i}}$ is supra soft vclosed set $\forall i \in I$, then by Theorem (2.6), we have $\forall i \in I$, $D_{\mathcal{S}_{v}}(\mathcal{S}_{\mathcal{V}_{i}}) \tilde{\subseteq} \mathcal{S}_{\mathcal{V}_{i}}$ hence $\forall i \in I$, $d \in \mathcal{S}_{\mathcal{V}_i} \tilde{\subseteq} \mathcal{S}_{\mathcal{V}}.$ Thus $\mathscr{A} \in \bigcap_{i \in I} \{\mathscr{S}_{\mathscr{V}_i} : \mathscr{S}_{\mathscr{V}_i} \text{ is supra soft } \mathscr{A} - \text{ closed that} \}$ contains $\mathscr{S}_{\mathscr{V}}$ that is $\mathscr{A} \in cl_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}})$ which implies that $D_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{V}}) \widetilde{\subseteq} cl_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{V}}).$ So, we have $\mathscr{S}_{\mathscr{V}}[]D_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}})\underline{\widetilde{\subseteq}}cl_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{V}}).$ Therefore, $cl_{\mathscr{I}_{\mathscr{I}}}(\mathscr{S}_{\mathscr{V}}) = \mathscr{S}_{\mathscr{V}}(D_{\mathscr{I}_{\mathscr{I}}}(\mathscr{S}_{\mathscr{V}}))$.

Example (2.10). Let $\mathscr{X} = \{u_1, u_2, u_3\}$ and $\mathscr{E} = \{e_1, e_2\}$. Then

Where:

$$\begin{split} \mathcal{S}_{\mathcal{V}_{1}} &= \{(e_{1}, \{u_{1}\}), (e_{2}, \{u_{2}\})\}, \\ \mathcal{S}_{\mathcal{V}_{2}} &= \{(e_{1}, \{u_{1}\}), (e_{2}, \{u_{1}, u_{2}\})\}, \\ \mathcal{S}_{\mathcal{V}_{3}} &= \{(e_{1}, \{u_{1}\}), (e_{2}, \{u_{2}, u_{3}\})\}, \\ \mathcal{S}_{\mathcal{V}_{4}} &= \{(e_{1}, \{u_{1}, u_{2}\}), (e_{2}, \{u_{2}\})\}, \\ \mathcal{S}_{\mathcal{V}_{5}} &= \{(e_{1}, \{u_{1}, u_{3}\}), (e_{2}, \{u_{2}\})\}, \\ \mathcal{S}_{\mathcal{V}_{7}} &= \{(e_{1}, \mathcal{X}), (e_{2}, \{u_{2}\})\}, \\ \mathcal{S}_{\mathcal{V}_{7}} &= \{(e_{1}, \mathcal{X}), (e_{2}, \{u_{2}\})\}, \\ \mathcal{S}_{\mathcal{V}_{9}} &= \{(e_{1}, \{u_{1}, u_{2}\}), (e_{2}, \{u_{1}, u_{2}\})\}, \\ \mathcal{S}_{\mathcal{V}_{9}} &= \{(e_{1}, \{u_{1}, u_{3}\}), (e_{2}, \{u_{1}, u_{2}\})\}, \\ \mathcal{S}_{\mathcal{V}_{10}} &= \{(e_{1}, \{u_{1}, u_{3}\}), (e_{2}, \{u_{2}, u_{3}\})\}, \\ \mathcal{S}_{\mathcal{V}_{11}} &= \{(e_{1}, \{u_{1}, u_{3}\}), (e_{2}, \mathcal{X})\}, \\ \mathcal{S}_{\mathcal{V}_{12}} &= \{(e_{1}, \{u_{1}, u_{3}\}), (e_{2}, \mathcal{X})\}, \\ \mathcal{S}_{\mathcal{V}_{13}} &= \{(e_{1}, \mathcal{X}), (e_{2}, \{u_{1}, u_{2}\})\}, \\ \mathcal{S}_{\mathcal{V}_{14}} &= \{(e_{1}, \mathcal{X}), (e_{2}, \{u_{1}, u_{3}\})\}, \\ \mathcal{S}_{\mathcal{V}_{15}} &= \{(e_{1}, \{u_{2}, u_{3}\}), (e_{2}, \{u_{1}, u_{3}\})\}, \\ \mathcal{S}_{\mathcal{V}_{16}} &= \{(e_{1}, \{u_{2}, u_{3}\}), (e_{2}, \{u_{1}\})\}, \\ \mathcal{S}_{\mathcal{V}_{19}} &= \{(e_{1}, \{u_{2}, u_{3}\}), (e_{2}, \{u_{1}\})\}, \\ \mathcal{S}_{\mathcal{V}_{19}} &= \{(e_{1}, \{u_{2}, u_{3}\}), (e_{2}, \{u_{1}, u_{3}\})\}, \\ \mathcal{S}_{\mathcal{V}_{20}} &= \{(e_{1}, \{u_{2}\}), (e_{2}, \{u_{1}, u_{3}\})\}, \\ \mathcal{S}_{\mathcal{V}_{21}} &= \{(e_{1}, \{u_{2}\}), (e_{2}, \{u_{1}, u_{3}\})\}, \end{split}$$

$$\tilde{\mathbf{P}}(\mathcal{F}_{\tilde{\mathcal{E}}}) = \begin{cases} \mathcal{S}_{\Phi}, \mathcal{S}_{\tilde{\mathcal{E}}}, \mathcal{S}_{\mathcal{V}_{1}}, \mathcal{S}_{\mathcal{V}_{2}}, \mathcal{S}_{\mathcal{V}_{3}}, \mathcal{S}_{\mathcal{V}_{4}}, \mathcal{S}_{\mathcal{V}_{5}}, \mathcal{S}_{\mathcal{V}_{6}}, \mathcal{S}_{\mathcal{V}_{7}}, \mathcal{S}_{\mathcal{V}_{8}}, \mathcal{S}_{\mathcal{V}_{9}}, \mathcal{S}_{\mathcal{V}_{10}}, \\ \mathcal{S}_{\mathcal{V}_{11}}, \mathcal{S}_{\mathcal{V}_{12}}, \mathcal{S}_{\mathcal{V}_{13}}, \mathcal{S}_{\mathcal{V}_{14}}, \mathcal{S}_{\mathcal{V}_{15}}, \mathcal{S}_{\mathcal{V}_{16}}, \mathcal{S}_{\mathcal{V}_{17}}, \mathcal{S}_{\mathcal{V}_{18}}, \mathcal{S}_{\mathcal{V}_{19}}, \mathcal{S}_{\mathcal{V}_{20}}, \\ \mathcal{S}_{\mathcal{V}_{21}}, \mathcal{S}_{\mathcal{V}_{22}}, \mathcal{S}_{\mathcal{V}_{23}}, \mathcal{S}_{\mathcal{V}_{24}}, \mathcal{S}_{\mathcal{V}_{25}}, \mathcal{S}_{\mathcal{V}_{26}}, \mathcal{S}_{\mathcal{V}_{27}}, \mathcal{S}_{\mathcal{V}_{28}}, \mathcal{S}_{\mathcal{V}_{29}}, \mathcal{S}_{\mathcal{V}_{30}}, \\ \mathcal{S}_{\mathcal{V}_{31}}, \mathcal{S}_{\mathcal{V}_{32}}, \mathcal{S}_{\mathcal{V}_{33}}, \mathcal{S}_{\mathcal{V}_{44}}, \mathcal{S}_{\mathcal{V}_{35}}, \mathcal{S}_{\mathcal{V}_{36}}, \mathcal{S}_{\mathcal{V}_{37}}, \mathcal{S}_{\mathcal{V}_{38}}, \mathcal{S}_{\mathcal{V}_{39}}, \mathcal{S}_{\mathcal{V}_{40}}, \\ \mathcal{S}_{\mathcal{V}_{41}}, \mathcal{S}_{\mathcal{V}_{42}}, \mathcal{S}_{\mathcal{V}_{43}}, \mathcal{S}_{\mathcal{V}_{44}}, \mathcal{S}_{\mathcal{V}_{45}}, \mathcal{S}_{\mathcal{V}_{46}}, \mathcal{S}_{\mathcal{V}_{47}}, \mathcal{S}_{\mathcal{V}_{48}}, \mathcal{S}_{\mathcal{V}_{49}}, \mathcal{S}_{\mathcal{V}_{50}}, \mathcal{S}_{\mathcal{V}_{51}}, \\ \mathcal{S}_{\mathcal{V}_{52}}, \mathcal{S}_{\mathcal{V}_{53}}, \mathcal{S}_{\mathcal{V}_{54}}, \mathcal{S}_{\mathcal{V}_{55}}, \mathcal{S}_{\mathcal{V}_{56}}, \mathcal{S}_{\mathcal{V}_{57}}, \mathcal{S}_{\mathcal{V}_{58}}, \mathcal{S}_{\mathcal{V}_{59}}, \mathcal{S}_{\mathcal{V}_{60}}, \mathcal{S}_{\mathcal{V}_{61}}, \mathcal{S}_{\mathcal{V}_{62}} \end{array} \right)$$

$$\begin{split} \mathcal{F}_{T_{W}} &= \{(c_{2},\{u_{1},u_{3}\})\}, & \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2}\}),(c_{2},\{u_{2},u_{3}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{3}\}),(c_{2},\{u_{3}\})\}, & \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{1},u_{2}\}),(c_{2},\{u_{1},u_{3}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{1},u_{2}\}),(c_{2},\{u_{1}\})\}, & \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{1},u_{2}\}),(c_{2},\{u_{1},u_{3}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{1}\}),(c_{2},\{u_{1}\})\}, & \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{1}\}),(c_{2},\{u_{1},u_{2}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{1}\}),(c_{2},\{u_{1}\})\}, & \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{1}\}),(c_{2},\{u_{2},u_{3}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{1}\})\}, & \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{2},u_{1}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{1}\})\}, & \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{2},u_{1}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{1}\})\}, & \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{2},u_{2},u_{1}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{1},u_{2}\}),(c_{2},\{u_{2},u_{3}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{1},u_{2}\}),(c_{2},\{u_{2},u_{3}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{1},u_{2}\}),(c_{2},\{u_{2},u_{3}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{1},u_{2}\}),(c_{2},\{u_{2},u_{3}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{1},u_{2}\}),(c_{2},\{u_{1},u_{3}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{1},u_{2}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{1},u_{2}\}),(c_{2},\{u_{1},u_{3}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{1},u_{2}\}),(c_{2},\{u_{1},u_{3}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{1},u_{2}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{1}\}),(c_{2},\{u_{1},u_{3}\})\}, \\ \mathcal{F}_{T_{W}}} &= \{(c_{1},\{u_{2},u_{1},u_{2}\})\}, \\ \mathcal{F}_{T_{W}} &= \{(c_{1},\{u_{2},u_{1},u_{2}\}),(c_{2},\{u_{1},u_{3}\}),(c_{2},\{u_{1},u_{3}\}),(c_{2},\{u_{1},u_{3}\}),(c_{2},\{u_{1},u_{3}\}),(c_{2},\{u_{1},u_{3}\}),(c_{2},\{u_{1},u_{3}\}), \\ \mathcal{F}_{T_{W}}} &= \{(c_{1},\{u_{1},u_{1},u_{1},u_{2},u_{1}\}), \\ \mathcal{F}_{T_{W}}} &= \{(c_{1},\{u_{2},u_{1},u_{1},u_{1}\}),(c_{2},\{u_{1},u_{2}\}),(c_{2},\{u_{1},u_{2}\}),(c_{2},\{u_{2},u_{2}\}),(c_{2},\{u_{2},u_{2}\}), \\ \mathcal{F}_{T_{W}}} &= \{(c_{1},\{u_{2},u_{1},u_{2},u_{1}\}), \\ \mathcal{F}_{T_{W}}} &= \{(c_{1},\{u_{2},u_{2},u_{2},u_{2},u_{2}\}), \\ \mathcal{F}_$$

 $\mathscr{S}_{\mathscr{V}_{46}} = \{(e_1, \{u_2\}), (e_2, \{u_1, u_2\})\}$

$$\mathcal{S}\nu C_{\mathcal{F}_{\widetilde{\ell}}} = \left\{ \begin{array}{c} \mathcal{S}_{\Phi}, \mathcal{S}_{\widetilde{\ell}}, \mathcal{S}_{\mathcal{V}_{16}}, \mathcal{S}_{\mathcal{V}_{17}}, \mathcal{S}_{\mathcal{V}_{18}}, \mathcal{S}_{\mathcal{V}_{19}}, \mathcal{S}_{\mathcal{V}_{20}}, \mathcal{S}_{\mathcal{V}_{21}}, \mathcal{S}_{\mathcal{V}_{22}}, \\ \mathcal{S}_{\mathcal{V}_{23}}, \mathcal{S}_{\mathcal{V}_{24}}, \mathcal{S}_{\mathcal{V}_{25}}, \mathcal{S}_{\mathcal{V}_{26}}, \mathcal{S}_{\mathcal{V}_{27}}, \mathcal{S}_{\mathcal{V}_{28}}, \mathcal{S}_{\mathcal{V}_{29}}, \mathcal{S}_{\mathcal{V}_{30}} \end{array} \right\}$$

Therefore, $(\mathscr{X}, \mathscr{S}_{r}O_{\mathscr{F}_{\widetilde{\mathscr{X}}}}, \mathscr{E})$ is a supra soft r- space. Now, $cl_{\mathscr{F}_{e}}(\mathscr{S}_{\mathscr{T}_{16}}) = \mathscr{S}_{\mathscr{T}_{16}}$ and $cl_{\mathscr{F}_{e}}(\mathscr{S}_{\mathscr{T}_{32}}) = \mathscr{S}_{\widetilde{\mathscr{E}}}$

Proposition (2.11). Let \mathscr{X} be a universal set and \mathscr{E} is a set of parameters with respect to \mathscr{X} and let $\{\mathfrak{F}_{\kappa}\}_{\kappa \in J}, \kappa \geq 2$, be a collection of supra soft topologies on $\mathscr{S}_{\mathfrak{F}}$. If $\mathscr{S}_{\mathrm{T}} \in \mathfrak{F}_{\kappa}$ for all $\kappa \in J$, then

 $cl^{\mathfrak{F}_{\kappa}}(\mathscr{S}_{\mathrm{T}}^{c}) = cl_{\mathscr{S}_{\nu}}(\mathscr{S}_{\mathrm{T}}^{c}) = \mathscr{S}_{\mathrm{T}}^{c}.$

Proof. Assume that $\mathscr{S}_{T} \in \mathfrak{F}_{\kappa}$ for all $\kappa \in J$, then we have $\mathscr{S}_{T} \in \mathscr{S}_{\nu} \mathcal{O}_{\mathscr{S}_{\kappa}}$, thus \mathscr{S}_{T} is a supra soft ν - open, therefore \mathscr{S}_{T}^{c} is a supra soft ν - closed, so by Corollary (2.3), we have $cl_{\mathscr{S}_{\nu}}(\mathscr{S}_{T}^{c}) = \mathscr{S}_{T}^{c}$.

Now, $\mathscr{S}_{T} \in \mathfrak{F}_{\kappa}$ for all $\kappa \in J$, then \mathscr{S}_{T} is a supra soft open set in $(\mathscr{X}, \mathfrak{F}_{\kappa}, \mathscr{E})$ for all $\kappa \in J$, that is \mathscr{S}_{T}^{c} is a supra soft closed in $(\mathscr{X}, \mathfrak{F}_{\kappa}, \mathscr{E})$ for all $\kappa \in J$, thus $cl^{\mathfrak{F}_{\kappa}}(\mathscr{S}_{T}^{c}) = \mathscr{S}_{T}^{c}$.

Consequentially, $cl^{\mathfrak{F}_{\kappa}}(\mathscr{S}_{\mathrm{T}}^{c}) = cl_{\mathscr{S}_{\kappa}}(\mathscr{S}_{\mathrm{T}}^{c}) = \mathscr{S}_{\mathrm{T}}^{c}$.

Corollary (2.12). Let \mathscr{X} be a universal set and \mathscr{E} is a set of parameters with respect to \mathscr{X} and let $\{\widetilde{\mathfrak{B}}_{\kappa}\}_{\kappa \in J}$, $\kappa \geq 2$, be a collection of supra soft topologies on $\mathscr{S}_{\widetilde{\mathscr{E}}}$. If $\mathscr{S}_{\mathrm{T}} \in \bigcap_{\kappa \in J} \widetilde{\mathfrak{B}}_{\kappa}$.

Then $cl_{\kappa \in J}^{\bigcap \widetilde{\mathfrak{G}}_{\kappa}}(\mathscr{S}_{\mathsf{T}}^{c}) = \mathscr{S}_{\mathsf{T}}^{c} = cl_{\mathscr{S}_{r}}(\mathscr{S}_{\mathsf{T}}^{c}).$

Proof. Assume that $\mathscr{S}_{T} \in \bigcap \mathfrak{F}_{\kappa}$, then $\mathscr{S}_{T} \in \mathfrak{F}_{\kappa}$ for all $\kappa \in J$, hence by Proposition (2.11), we have $cl^{\mathfrak{F}_{\kappa}}(\mathscr{S}_{T}^{c}) = \mathscr{S}_{T}^{c} = cl_{\mathscr{S}_{\kappa}}(\mathscr{S}_{T}^{c})$. But, \mathscr{S}_{T}^{c} is a supra soft closed in $(\mathscr{X}, \mathfrak{F}_{\kappa}, \mathscr{E})$ for all $\kappa \in J$, then \mathscr{S}_{T}^{c} is a supra soft closed in $(\mathscr{X}, \bigcap \mathfrak{F}_{\kappa'}, \mathscr{E})$.

Therefore, $cl_{\kappa\in J}^{\bigcap \widetilde{\delta}_{\kappa}}(\mathscr{S}_{T}^{c}) = \mathscr{S}_{T}^{c} = cl_{\mathscr{S}_{\ell}}(\mathscr{S}_{T}^{c}).$

Definition (2.13). Let $(\mathscr{X}, \mathscr{S}_{\mathscr{V}}\mathcal{O}_{\mathscr{F}_{\mathscr{V}}}, \mathscr{E})$ be a supra soft v- space and $\mathscr{S}_{\mathscr{M}} \subseteq \mathscr{S}_{\mathscr{V}}$. A point $d \in \mathscr{S}_{\mathscr{M}}$ is called an supra soft v- interior point of $\mathscr{S}_{\mathscr{M}}$ if there is $\mathscr{S}_{\mathscr{V}} \in \mathscr{S}_{\mathscr{V}}\mathcal{O}_{\mathscr{F}_{\mathscr{V}}}$ such that $\in \mathscr{S}_{\mathscr{V}} \subseteq \mathscr{S}_{\mathscr{M}}$.

Definition (2.14). Let $(\mathscr{X}, \mathscr{G}_{\mathscr{V}} \mathcal{O}_{\mathscr{F}_{v}}, \mathscr{E})$ be a supra soft v- space and $\mathscr{G}_{\mathscr{M}} \subseteq \mathscr{G}_{\widetilde{\mathscr{E}}}$. The set of all supra soft v- interior points of $\mathscr{G}_{\mathscr{M}}$ is called supra *soft* v- interior of $\mathscr{G}_{\mathscr{M}}$ and is denoted by $lnt_{\mathscr{G}_{v}}(\mathscr{G}_{\mathscr{M}})$.

Theorem (2.15).

$$lnt_{\mathscr{G}_{\mathscr{M}}}(\mathscr{G}_{\mathscr{M}}) = \bigcup_{i \in I} \left\{ \begin{array}{c} \mathscr{G}_{\mathscr{V}_{i}} : \mathscr{G}_{\mathscr{V}_{i}} \text{ is supra soft } v - \text{open} \\ \text{which contained in } \mathscr{G}_{\mathscr{M}} \end{array} \right\}$$

Proof. Assume $\mathscr{A} \in Int_{\mathscr{F}_{\ell}}(\mathscr{F}_{\mathscr{M}})$, then \mathscr{A} is an supra soft v- interior point of $\mathscr{F}_{\mathscr{M}}$, hence there is $\mathscr{F}_{\mathscr{T}} \in \mathscr{F}_{v} \mathcal{O}_{\mathscr{F}_{\widetilde{\mathcal{X}}}}$ such that $\mathscr{A} \in \mathscr{F}_{\mathscr{T}} \subseteq \mathscr{F}_{\mathscr{M}}$. Now, $\mathscr{F}_{\mathscr{T}}$ is a supra soft v- open such that $\mathscr{F}_{\mathscr{T}} \subseteq \mathscr{F}_{\mathscr{M}}$. So, we have $\mathscr{A} \in \bigcup_{i \in I} \left\{ \mathscr{F}_{\mathscr{T}_{i}} : \mathscr{F}_{\mathscr{T}_{i}} \text{ is supra soft } v$ - open which contained in $\mathscr{F}_{\mathscr{M}} \right\}$. Which is implies that,

This completes the proof.

Theorem (2.16). Let $(\mathcal{X}, \mathcal{G}_{\mathcal{V}}, \mathcal{G}_{\mathcal{I}_{\mathcal{I}}}, \mathcal{E})$ be a supra soft v- space and $\mathcal{G}_{\mathcal{M}} \subseteq \mathcal{G}_{\mathcal{I}}$. Then $lnt_{\mathcal{G}_{\mathcal{V}}}(\mathcal{G}_{\mathcal{M}})$ is the largest supra soft v- open set contained in $\mathcal{G}_{\mathcal{M}}$.

Proof. From Theorem (2.15), we have

$$lnt_{\mathscr{T}_{e}}(\mathscr{S}_{\mathscr{M}}) = \bigcup_{i \in I} \left\{ \begin{array}{c} \mathscr{S}_{\mathscr{V}_{i}} : \mathscr{S}_{\mathscr{V}_{i}} \text{ is supra soft } \nu-\text{open} \\ \text{which contained in } \mathscr{S}_{\mathscr{M}} \end{array} \right\}.$$

The arbitrary union of supra soft v- open is also supra soft v- open. Hence $lnt_{\mathscr{S}v}(\mathscr{S}_{\mathscr{M}})$ is a supra soft v- open set. Let $\mathscr{S}_{\mathscr{V}_i}$ is supra soft v- open and $\mathscr{S}_{\mathscr{V}_i} \subseteq \mathscr{S}_{\mathscr{M}} \quad \forall i \in I$. Then

$$\bigcup_{i\in I} \left\{ \begin{array}{c} \mathscr{S}_{\mathscr{V}_i} : \mathscr{S}_{\mathscr{V}_i} \text{ is supra soft } v\text{-open} \\ \text{which contained in } \mathscr{S}_{\mathscr{M}} \end{array} \right\} \tilde{\triangleleft} \mathscr{S}_{\mathscr{M}}.$$

Hence, $Int_{\mathscr{T}_{\ell}}(\mathscr{S}_{\mathscr{M}}) \widetilde{\subseteq} \mathscr{S}_{\mathscr{M}}$. Now, let $\mathscr{S}_{\mathscr{V}_{i}}^{*}$ be a supra soft v- open such that $\mathscr{S}_{\mathscr{V}_{i}}^{*} \subseteq \mathscr{S}_{\mathscr{M}}$. Then

$$\mathscr{S}_{\mathscr{V}_{i}}^{*} \widetilde{\triangleleft} \bigcup_{i \in I} \left\{ \mathscr{S}_{\mathscr{V}_{i}} : \mathscr{S}_{\mathscr{V}_{i}} \text{ is supra soft } v-\text{open} \\ \text{which contained in } \mathscr{S}_{\mathscr{M}} \right\}$$

that is, $\mathscr{S}_{\mathscr{V}_i}^* \cong Int_{\mathscr{S}_v}(\mathscr{S}_{\mathscr{M}})$. Therefore, $Int_{\mathscr{S}_v}(\mathscr{S}_{\mathscr{M}})$ is the largest supra soft v-open contained in $\mathscr{S}_{\mathscr{M}}$.

Theorem (2.17). $\mathscr{S}_{\mathscr{M}}$ is a supra soft v- open if and only if $lnt_{\mathscr{S}_v}(\mathscr{S}_{\mathscr{M}}) = \mathscr{S}_{\mathscr{M}}$.

Proof. Assume $\mathscr{S}_{\mathscr{M}}$ is a supra soft v- open. From Theorem (2.16), we have $lnt_{\mathscr{F}_v}(\mathscr{S}_{\mathscr{M}})\subseteq \mathscr{S}_{\mathscr{M}}$. But $\mathscr{S}_{\mathscr{M}}$ is a supra soft v- open & $\mathscr{S}_{\mathscr{M}}\subseteq \mathscr{S}_{\mathscr{M}}$ and $lnt_{\mathscr{S}_v}(\mathscr{S}_{\mathscr{M}})$ is the largest supra soft v- open set contained in $\mathscr{S}_{\mathscr{M}}$. Then $\mathscr{S}_{\mathscr{M}}\subseteq lnt_{\mathscr{S}_v}(\mathscr{S}_{\mathscr{M}})$. Hence $lnt_{\mathscr{S}_v}(\mathscr{S}_{\mathscr{M}}) =$ $\mathscr{S}_{\mathscr{M}}$.

Conversely: suppose that $ln t_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}) = \mathscr{S}_{\mathscr{M}}$. By Theorem (2.16), we have $lnt_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}})$ is a supra soft v- open set. This completes the proof.

Theorem (2.18). Let $(\mathscr{X}, \mathscr{S}_{\ell} \circ \mathcal{O}_{\mathscr{F}_{\varepsilon}}, \mathscr{E})$ be supra soft v-space and $\mathscr{S}_{\mathscr{M}}, \mathscr{S}_{\mathscr{N}} \subseteq \mathscr{S}_{\mathfrak{F}}$. Then

1. If $\mathscr{S}_{\mathscr{M}} \subseteq \mathscr{S}_{\mathscr{N}}$, then $lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}}) \subseteq lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{N}})$. 2. $lnt_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}} \cap \mathscr{S}_{\mathscr{N}}) \subseteq lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}}) \cap lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{N}})$. 3. $lnt_{\mathscr{F}_{v}}(lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}})) = lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}})$. 4. $lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\phi}) = \mathscr{S}_{\phi}$ and $lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\widetilde{\mathscr{I}}}) = \mathscr{S}_{\widetilde{\mathscr{I}}}$.

Proof.

- Suppose that \$\mathscrel{P}_{\mathscr{M}} \in \mathscrel{L}_{\mathscr{N}}\$. Since \$lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}})\$ is a supra soft \$\nu\$- open set contained in \$\mathscrel{P}_{\mathscr{M}}\$, then \$lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}})\$ is a supra soft \$\nu\$- open set contained in \$\mathscr{S}_{\mathscr{N}}\$. But \$lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{N}})\$ is the largest supra soft \$\nu\$- open set contained in \$\mathscr{S}_{\mathscr{N}}\$, which implies to \$lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}})\$.
- 2. Let $\mathscr{A} \in Int_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}} \cap \mathscr{S}_{\mathscr{N}})$, then \mathscr{A} is an supra soft \mathscr{V} - interior point of $\mathscr{S}_{\mathscr{M}} \cap \mathscr{S}_{\mathscr{N}}$, hence there is $\mathscr{S}_{\mathscr{V}} \in \mathscr{S}_{v} \mathcal{O}_{\mathscr{S}}$ such that $\mathscr{A} \in \mathscr{S}_{\mathscr{V}} \subseteq \mathscr{S}_{\mathscr{M}} \cap \mathscr{S}_{\mathscr{N}}$. Thus $\mathscr{A} \in \mathscr{S}_{\mathscr{V}} \subseteq \mathscr{S}_{\mathscr{M}}$ and $\in \mathscr{S}_{\mathscr{V}} \subseteq \mathscr{S}_{\mathscr{N}}$, therefore \mathscr{A} is an supra soft \mathscr{V} - interior point of $\mathscr{S}_{\mathscr{M}}$ and $\mathscr{S}_{\mathscr{N}}$. Thus $\mathscr{A} \in Int_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}})$ and $\mathscr{A} \in Int_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{N}})$.

Consequentially, $\mathscr{A} \in Int_{\mathscr{L}^{e}}(\mathscr{S}_{\mathscr{M}}) \bigcap Int_{\mathscr{L}^{e}}(\mathscr{S}_{\mathscr{N}}).$ Hence, $Int_{\mathscr{I}^{e}}(\mathscr{S}_{\mathscr{M}} \cap \mathscr{S}_{\mathscr{N}}) \subseteq Int_{\mathscr{I}^{e}}(\mathscr{S}_{\mathscr{M}}) \cap Int_{\mathscr{I}^{e}}(\mathscr{S}_{\mathscr{N}})$

- 3. The proof follows from Theorem (3.16).
- 4. Since \mathscr{S}_{ϕ} and $\mathscr{S}_{\tilde{\mathscr{E}}}$ are supra soft v- open sets, then by Theorem (2.17), the results follows.

Proposition (2.19).

Let \mathscr{X} be a universal set and \mathscr{E} is a set of parameters with respect to \mathscr{X} and let $\{\mathfrak{F}_{\kappa}\}_{\kappa \in J}$, $\kappa \geq 2$, be a collection of supra soft topologies on $\mathscr{F}_{\mathfrak{F}}$. If $\mathscr{F}_{T} \in \mathfrak{F}_{\kappa}$ for all $\kappa \in J$, then

$$lnt^{\mathfrak{F}_{\kappa}}(\mathscr{S}_{\mathrm{T}}) = lnt_{\mathscr{S}_{\nu}}(\mathscr{S}_{\mathrm{T}}) = \mathscr{S}_{\mathrm{T}}$$

Proposition (2.20).

If
$$\mathscr{S}_{\mathrm{T}} \in \bigcap_{\kappa \in \mathrm{J}} \widetilde{\mathfrak{V}}_{\kappa}$$
. Then $lnt^{\left(\bigcap_{\kappa \in \mathrm{J}} \widetilde{\mathfrak{V}}_{\kappa}\right)}(\mathscr{S}_{\mathrm{T}}) = lnt_{\mathscr{S}_{\ell}}(\mathscr{S}_{\mathrm{T}})$.

Proof. The result is follows from Proposition (2.19).

Example (2.21). Let $\mathscr{X} = \{u_1, u_2, u_3\}$ and $\mathscr{E} = \{e_1, e_2, e_3\}$. Define \mathfrak{F}_1 , \mathfrak{F}_2 as follows: $\mathfrak{F}_1 = \begin{cases} \mathscr{S}_{\Phi}, \mathscr{S}_{\mathfrak{E}}, \{(e_1, \{u_1\}), (e_2, \{u_2\}), (e_3, \{u_3\})\}, \\ \{(e_1, \{u_1, u_2\}), (e_2, \{u_2, u_3\}), (e_3, \{u_2, u_3\})\} \end{cases}$ and

$$\mathfrak{F}_{2} = \left\{ \begin{array}{l} \mathscr{S}_{\Phi}, \mathscr{S}_{\tilde{\mathscr{E}}}, \{(e_{1}, \{u_{3}\}), (e_{2}, \{u_{1}\}), (e_{3}, \{u_{2}\})\}, \\ \{(e_{1}, \{u_{1}, u_{2}\}), (e_{2}, \{u_{2}, u_{3}\}), (e_{3}, \{u_{2}, u_{3}\})\} \end{array} \right\}$$

Then $(\mathscr{X}, \mathfrak{F}_1, \mathscr{E})$, $(\mathscr{X}, \mathfrak{F}_2, \mathscr{E})$ are supra soft topological spaces. Now,

$$\mathfrak{F}_1 \bigcap \mathfrak{F}_2 = \{ \mathscr{S}_{\Phi}, \mathscr{S}_{\tilde{\mathscr{E}}}, \{ (e_1, \{u_1, u_2\} \times), (e_2, \{u_2, u_3\}), (e_3, \{u_2, u_3\}) \} \}.$$

Consider:

- $\mathcal{S}_{\mathscr{V}_{1}} = \{(e_{1}, \{u_{1}, u_{2}\}), (e_{2}, \{u_{2}, u_{3}\}), (e_{3}, \{u_{2}, u_{3}\})\}$ $\mathcal{S}_{\mathscr{V}_{2}} = \{(e_{1}, \mathscr{X}), (e_{2}, \{u_{2}, u_{3}\}), (e_{3}, \{u_{2}, u_{3}\})\}$ $\mathcal{S}_{\mathscr{V}_{3}} = \{(e_{1}, \{u_{1}, u_{2}\}), (e_{2}, \mathscr{X}), (e_{3}, \{u_{2}, u_{3}\})\}$
- $\mathscr{S}_{\mathscr{V}_4} = \{(e_1, \{u_1, u_2\}), (e_2, \{u_2, u_3\}), (e_3, \mathscr{X})\}$

$$\mathscr{S}_{\mathscr{V}_5} = \{(e_1, \mathscr{X}), (e_2, \mathscr{X}), (e_3, \{u_2, u_3\})\}$$

$$\mathscr{S}_{\mathscr{V}_6} = \{(e_1, \mathscr{X}), (e_2, \{u_2, u_3\}), (e_3, \mathscr{X})\}$$

$$\mathscr{S}_{\mathscr{V}_7} = \{(e_1, \{u_1, u_2\}), (e_2, \mathscr{X}), (e_3, \mathscr{X})\}$$

Now, $\mathscr{S}_{\mathscr{V}_1} \in \bigcap_{\kappa=1}^3 \mathfrak{F}_{\kappa}$ and $\mathscr{S}_{\mathscr{V}_1} \tilde{\subseteq} \mathscr{S}_{\mathscr{V}_i}$ for all i = 1, 2, ..., 7, then $\mathscr{S}_{\mathscr{V}_i}$ for all i = 1, 2, ..., 7 are supra soft v – open.

So, we have:

$$\mathcal{S}_{\mathscr{V}} \mathbf{O}_{\mathscr{T}_{\widetilde{\mathscr{X}}}} = \{ \mathcal{S}_{\Phi}, \mathcal{S}_{\widetilde{\mathscr{Y}}_{5}}, \mathcal{S}_{\mathscr{V}_{1}}, \mathcal{S}_{\mathscr{V}_{2}}, \mathcal{S}_{\mathscr{V}_{3}}, \mathcal{S}_{\mathscr{V}_{4}}, \mathcal{S}_{\mathscr{V}_{5}}, \\ \mathcal{S}_{\mathscr{V}_{6}}, \mathcal{S}_{\mathscr{V}_{7}} \}.$$

Now, $\mathscr{S}_{\mathscr{V}_1} \in \mathfrak{F}_{\kappa}$, for $\kappa = 1, 2$, then $\mathscr{S}_{\mathscr{V}_1} \in \mathfrak{F}_1 \cap \mathfrak{F}_2$ and

 $lnt^{\mathfrak{F}_{\kappa}}(\mathscr{S}_{\mathscr{V}_{1}}) = \mathscr{S}_{\mathscr{V}_{1}} \text{ and } lnt^{\mathfrak{F}_{1}}(\mathfrak{F}_{2}(\mathscr{S}_{\mathscr{V}_{1}})) = \mathscr{S}_{\mathscr{V}_{1}}.$ Also, $lnt_{\mathscr{S}_{\nu}}(\mathscr{S}_{\mathscr{V}_{1}}) = \mathscr{S}_{\mathscr{V}_{1}}.$ This example verifies Proposition (2.19) and Proposition (2.20).

Definition (2.22). Let $(\mathscr{X}, \mathscr{G}_{\mathscr{V}}, \mathscr{E})$ be a supra soft v- space and $\mathscr{G}_{\mathscr{M}} \subseteq \mathscr{G}_{\mathscr{E}}$. A point $d \in \mathscr{G}_{\mathscr{M}}$ is called an supra soft v- exterior point of $\mathscr{G}_{\mathscr{M}}$ if there is $\mathscr{G}_{\mathscr{V}} \in \mathscr{G}_{\mathscr{O}}$ such that $\in \mathscr{G}_{\mathscr{V}} \subseteq \mathscr{G}_{\mathscr{M}}^{c}$.

Definition (2.23). Suppose $(\mathcal{X}, \mathcal{S}_{\nu}O_{\mathcal{F}_{e}}, \mathcal{E})$ be a supra soft ν - space and $\mathcal{S}_{\mathcal{M}}\subseteq \mathcal{S}_{\mathcal{E}}$. The set of all supra soft ν - exterior point of $\mathcal{S}_{\mathcal{M}}$ is known as the supra soft ν - exterior of $\mathcal{S}_{\mathcal{M}}$ and is denoted by $ext_{\mathcal{F}_{\nu}}(\mathcal{S}_{\mathcal{M}})$.

Theorem (2.24). Let $(\mathscr{X}, \mathscr{S}_{\ell} \circ \mathcal{O}_{\mathscr{F}_{\ell}}, \mathscr{E})$ be a supra soft ι -space and $\mathscr{S}_{\mathscr{M}} \subseteq \mathscr{S}_{\widetilde{\mathscr{E}}}$. Then $ext_{\mathscr{S}_{\ell}}(\mathscr{S}_{\mathscr{M}}) = lnt_{\mathscr{S}_{\ell}}(\mathscr{S}_{\mathscr{M}}^{c})$.

Proof. Suppose that $\mathscr{A} \in ext_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}})$, then \mathscr{A} is an supra soft v- exterior point of $\mathscr{S}_{\mathscr{M}}$, so there is $\mathscr{S}_{\mathscr{T}} \in \mathscr{S}_{v} O_{\mathscr{S}_{\widetilde{\mathcal{T}}}}$ such that $\mathscr{A} \in \mathscr{S}_{\mathscr{T}} \subseteq \mathscr{S}_{\mathscr{M}}^{c}$, that is \mathscr{A} is a supra soft v- interior point of $\mathscr{S}_{\mathscr{M}}^{c}$, hence $\mathscr{A} \in lnt_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}^{c})$, thus $ext_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}) \subseteq lnt_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}^{c})$.

Assume $\mathscr{A} \in Int_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{A}}^{c})$, then \mathscr{A} is a supra soft vinterior point of $\mathscr{S}_{\mathscr{A}}^{c}$, hence there is $\mathscr{S}_{\mathscr{F}} \in \mathscr{S}_{v}O_{\mathscr{S}_{v}}$ such that $\mathscr{A} \in \mathscr{S}_{\mathscr{F}} \subseteq \mathscr{S}_{\mathscr{A}}^{c}$, thus by the definition of the supra soft v- exterior we have \mathscr{A} is a supra soft v- exterior point of $\mathscr{S}_{\mathscr{A}}$, hence $\mathscr{A} \in ext_{e}(\mathscr{S}_{\mathscr{A}})$. Therefore, $ext_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{A}}) \supseteq Int_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{A}}^{c})$. Hence, $ext_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{A}}) = Int_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{A}}^{c})$.

Theorem (2.25). If $\mathscr{S}_{\mathscr{M}} \subseteq \mathscr{S}_{\widetilde{\mathscr{E}}}$. Then $ext_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{M}}^{c}) = lnt_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{M}})$.

Proof. Assume that $\mathscr{A} \in ext_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}}^{c})$, then \mathscr{A} is an supra soft v- exterior point of $\mathscr{F}_{\mathscr{M}}^{c}$, so there is $\mathscr{S}_{\mathscr{V}} \in \mathscr{S}_{v} O_{\mathscr{F}_{x}}$ such that $\mathscr{A} \in \mathscr{S}_{\mathscr{V}} \subseteq (\mathscr{S}_{\mathscr{M}}^{c})^{c}$, but $\mathscr{S}_{\mathscr{M}} = (\mathscr{S}_{\mathscr{M}}^{c})^{c}$ which implies that \mathscr{A} is an supra soft v- interior point of $\mathscr{S}_{\mathscr{M}}$, hence $\mathscr{A} \in Int_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}})$, thus $ext_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}^{c}) \subseteq Int_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}})$.

Let $\mathscr{A} \in Int_{\mathscr{T}_{e}}(\mathscr{S}_{\mathscr{M}})$, then \mathscr{A} is an supra soft v- interior point of $\mathscr{S}_{\mathscr{M}}$, hence there is $\mathscr{S}_{\mathscr{T}} \in \mathscr{S}_{v} \mathcal{O}_{\mathscr{S}_{\widetilde{\mathcal{X}}}}$ such that $\mathscr{A} \in \mathscr{S}_{\mathscr{T}} \subseteq \mathscr{S}_{\mathscr{M}}$. Now, $\mathscr{S}_{\mathscr{M}} = (\mathscr{S}_{\mathscr{M}})^{c}$, then

 $\mathscr{A} \in \mathscr{S}_{\mathscr{T}} \subseteq (\mathscr{S}_{\mathscr{M}}^{c})^{c} \text{ where } \mathscr{S}_{\mathscr{T}} \in \mathscr{S}_{v} \mathcal{O}_{\mathscr{F}_{\widetilde{\mathscr{I}}}}, \text{ thus by the definition of supra soft } v-\text{ exterior we have } \mathscr{A} \text{ is a supra soft } v-\text{ exterior point of } \mathscr{S}_{\mathscr{M}}^{c}, \text{ thus } \mathscr{A} \in ext_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}}^{c}). \text{ Which implies that } ext_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}^{c}) \supseteq Int_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}). \text{ Therefore, } ext_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}}^{c}) = Int_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}).$

Theorem (2.26). Assume $\mathscr{S}_{\mathscr{M}} \subseteq \mathscr{S}_{\widetilde{\mathscr{E}}}$. Then $ext_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}) = (cl_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}))^{c}$.

Proof. Since

 $cl_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}) = \bigcap_{i \in I} \{\mathscr{S}_{\mathscr{V}_{i}} : \mathscr{S}_{\mathscr{V}_{i}} \text{ is supra soft } v - closed that contains } \mathscr{S}_{\mathscr{M}} \},$

then $(cl_{\mathscr{S}_{e}}(\mathscr{S}_{\mathscr{M}}))^{c} = (\bigcap_{i \in I} \{\mathscr{S}_{\mathscr{V}_{i}} : \mathscr{S}_{\mathscr{V}_{i}} : \mathscr{S}_{\mathcal{V}_{i}} : \mathscr{S}_{\mathcal{V}_{i}} : \mathscr{S}_{i} : \mathscr{S}_{i}$

Now, $\mathscr{S}_{\mathscr{V}_{i}}$ is supra soft v- closed and $\mathscr{S}_{\mathscr{M}} \subseteq \mathscr{S}_{\mathscr{V}_{i}} \forall i \in I$, then $\mathscr{S}_{\mathscr{V}_{i}}{}^{c}$ is a supra soft v- open and $\mathscr{S}_{\mathscr{V}_{i}}{}^{c} \subseteq \mathscr{S}_{\mathscr{M}}{}^{c} \forall i \in I$. Hence by De-Morgan Laws we have:

$$(cl_{\mathscr{T}_{\ell}}(\mathscr{T}_{\mathscr{M}}))^{c} = \widetilde{\bigcup_{i \in I}} \left\{ \begin{array}{c} \mathscr{T}_{\mathscr{T}_{i}}^{c} : \mathscr{T}_{\mathscr{T}_{i}}^{c} \text{ is suprasoft}_{\ell} - \text{open} \\ and \mathscr{T}_{\mathscr{T}_{i}}^{c} \tilde{\triangleleft} \mathscr{T}_{\mathscr{M}}^{c} \forall i \in I \end{array} \right\}$$

But,

 $\ln t_{\mathcal{F}_{v}}(\mathcal{S}_{\mathcal{M}}^{c}) = \\ \widetilde{\bigcup_{i \in I}} \left\{ \begin{array}{l} \mathcal{S}_{\mathcal{V}_{i}}^{c} : \mathcal{S}_{\mathcal{V}_{i}}^{c} \text{ is supra soft } v - open \\ and \, \mathcal{S}_{\mathcal{V}_{i}}^{c} \widetilde{\subseteq} \mathcal{S}_{\mathcal{M}}^{c} \, \forall i \in I \end{array} \right\}' \\ \text{thus } (cl_{\mathcal{F}_{v}}(\mathcal{S}_{\mathcal{M}}))^{c} = lnt_{\mathcal{F}_{v}}(\mathcal{S}_{\mathcal{M}}^{c}). \text{ But from Theorem} \\ (2.24), \text{ we have} \\ ext_{\mathcal{F}_{v}}(\mathcal{S}_{\mathcal{M}}) = lnt_{\mathcal{S}_{v}}(\mathcal{S}_{\mathcal{M}}^{c}). \text{ Hence } ext_{\mathcal{F}_{v}}(\mathcal{S}_{\mathcal{M}}) = \\ (cl_{\mathcal{F}_{v}}(\mathcal{S}_{\mathcal{M}}))^{c}. \end{array}$

Corollary (2.27). Suppose $\mathscr{S}_{\mathscr{M}} \widetilde{\subseteq} \mathscr{S}_{\widetilde{\mathscr{E}}}$. Then $cl_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{M}}) = (ext_{\mathscr{S}_{\mathscr{V}}}(\mathscr{S}_{\mathscr{M}}))^{c}$.

Proof. The result follows by Theorem (2.26).

Proposition (2.28). If
$$\mathscr{S}_{\mathscr{M}} \subseteq \mathscr{S}_{\widetilde{\mathscr{E}}}$$
. Then $(cl_{\mathscr{S}_{\mathscr{U}}}(\mathscr{S}_{\mathscr{M}}))^{c} = lnt_{\mathscr{S}_{\mathscr{U}}}(\mathscr{S}_{\mathscr{M}}^{c}).$

Proof. The result direct by Theorem (2.24) and Theorem (2.26).

3. Conclusions

The main results of this work are:

- 1 $cl_{\mathscr{T}_{\nu}}(\mathscr{S}_{\mathscr{T}})$ is the smallest supra soft ν closed set that contain $\mathscr{S}_{\mathscr{T}}$.
- $2 cl_{\mathscr{F}_{e}}(\mathscr{S}_{\mathscr{V}}) = \mathscr{S}_{\mathscr{V}} \bigcup D_{\mathscr{S}_{e}}(\mathscr{S}_{\mathscr{V}}) \text{ for any } \mathscr{S}_{\mathscr{V}} \tilde{\subseteq} \mathscr{S}_{\tilde{\mathscr{E}}}.$ $3 lnt_{\mathscr{S}_{e}}(\mathscr{S}_{\mathscr{M}}) =$

$$\bigcup_{i \in I} \left\{ \begin{array}{c} \mathscr{S}_{\mathscr{V}_i} : \mathscr{S}_{\mathscr{V}_i} \text{ is supra soft } v - open \\ which contained in \mathscr{S}_{\mathscr{M}} \end{array} \right\}.$$

4 $\mathscr{S}_{\mathscr{M}}$ is a supra soft v- openif and only if $lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}}) = \mathscr{S}_{\mathscr{M}}.$ 5 $ext_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}) = lnt_{\mathscr{F}_{v}}(\mathscr{S}_{\mathscr{M}}^{c}).$ 6 If $\mathscr{S}_{\mathscr{M}} \subseteq \mathscr{S}_{\mathscr{F}}.$ Then $ext_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}^{c}) = lnt_{\mathscr{S}_{v}}(\mathscr{S}_{\mathscr{M}}).$

With the ideas presented in this thesis, the following are some ideas and suggestions problems for the future works:

- 1. Studying some other concepts in supra soft vspace such as pre-supra soft v- open, semisupra soft v- open, regular-supra soft vopen, β - supra soft v- open, α - supra soft vopen and trying to investigating their relationship.
- 2. Introducing the concept of supra soft *e* open in fuzzy sets.
- 3. Studying the continuity, compactly and connectivity in supra soft *v* space.
- 4. Planning to be introduced the separation axioms in supra soft *u* space.

Author contribution

Luma S. Abdalbaqi: conceived of the presented and plan idea of this work and introduced the definition of supra soft space, the examples and conclusion. Yasmin A. Hamid: developed the theory and performed the computations and the results of this paper.

All authors written the introduction and references and discussed the results and contributed to the final manuscript.

References

- Mashhour AS, Allam AA, Mahmoud FS, Khedr FH. On supra topological spaces. Indian J Pure Appl Math 1983;14(4):502–10.
- [2] Molodtsov D. Soft set theory first results. Comput Math Appl 1999;37:19–31.
- [3] Çağman N, Karata S, Enginoglu S. Soft topology. Comput Math Appl [Internet] 2011;62(1):351-8. Available from: https://doi.org/10.1016/j.camwa.2011.05.016.
- [4] El-Sheikh SA, Abd El-latif AM. Decompositions of some types of supra soft sets and soft continuity. Int J Math Trends Technol 2014;9(1):37–56.
- [5] Sameer ZT, Abdalbaqi LS. Some properties of an v-open set. J Interdiscipl Math 2023;26(5):873–9.
- [6] Levine N. Semi-open sets and semi-continuity in topological spaces. Am Math Mon 1963;70(1):36–41.
- [7] Nasef AA, Radwan AE, Esmaeel RB. Some properties of αopen sets with respect to an ideal. Int J Pure Appl Math 2015; 102(4):613–30.
- [8] Ali M, Massed A-R, Mohammad A-J. β*-Open sets and β*-continuity in topological spaces. Thai J Math [Internet] 2014;8:142–8. Available from: https://doi.org/10.1016/j.jtusci.2013.09.006.
- [9] Al-shami T. Further notions related to new operators and compactness via supra soft topological spaces. 2019 (January).
- [10] Al-shami TM, El-Shafei ME. On supra soft topological ordered spaces. Arab J Basic Appl Sci [Internet] 2019;26(1):433-45. Available from: https://doi.org/10.1080/25765299.2019.1664101.
- [11] Al-Shami TM, Mhemdi A. Two families of separation axioms on infra soft topological spaces. Filomat 2022;36(4):1143-57.