

[Volume 2](https://bjeps.alkafeel.edu.iq/journal/vol2) | [Issue 2](https://bjeps.alkafeel.edu.iq/journal/vol2/iss2) Article 10

δ-Small Intersection Graphs of Modules

Ahmed H. Alwan Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Follow this and additional works at: [https://bjeps.alkafeel.edu.iq/journal](https://bjeps.alkafeel.edu.iq/journal?utm_source=bjeps.alkafeel.edu.iq%2Fjournal%2Fvol2%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Discrete Mathematics and Combinatorics Commons](https://network.bepress.com/hgg/discipline/178?utm_source=bjeps.alkafeel.edu.iq%2Fjournal%2Fvol2%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Alwan, Ahmed H. (2023) "δ-Small Intersection Graphs of Modules," Al-Bahir Journal for Engineering and Pure Sciences: Vol. 2: Iss. 2, Article 10. Available at: <https://doi.org/10.55810/2313-0083.1026>

This Original Study is brought to you for free and open access by Al-Bahir Journal for Engineering and Pure Sciences. It has been accepted for inclusion in Al-Bahir Journal for Engineering and Pure Sciences by an authorized editor of Al-Bahir Journal for Engineering and Pure Sciences. For more information, please contact [bjeps@alkafeel.edu.iq.](mailto:bjeps@alkafeel.edu.iq)

ORIGINAL STUDY d-Small Intersection Graphs of Modules

Ahmed H. Alwan

Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq

Abstract

Let R be a commutative ring with unit and U be a unitary left R-module. The δ -small intersection graph of non-trivial submodules of U, denoted by $\Gamma_{\delta}(U)$, is an undirected simple graph whose vertices are the non-trivial submodules of U, and two vertices are adjacent if and only if their intersection is a δ -small submodule of U. In this article, we study the interplay between the algebraic properties of U, and the graph properties of $\Gamma_{\delta}(U)$ such as connectivity, completeness and planarity. Moreover, we determine the exact values of the diameter and girth of $\Gamma_{\delta}(U)$, as well as give a formula to compute the clique and domination numbers of $\Gamma_{\delta}(U)$.

Keywords: Module, d-Small intersection graph, Connectivity, Domination, Planarity

1. Introduction

¹ he study of algebraic structures, using the properties of graph theory, tends to an exciting research topic in the last decade. Bosak in 1964 [[9\]](#page-7-0) introduced the concept of the intersection graph of semigroups. Beck [\[7](#page-7-1)] introduced the concept of the zero-divisor graph of rings. The intersection graph of ideals of a ring was considered by Chakrabarty, Ghosh, Mukherjee and Sen [\[10](#page-7-2)]. The intersection graph of ideals of submodules of modules have been investigated in [\[1](#page-7-3)]. Numerous other classes of graphs related with algebraic structures have been also actively examined, for instance, see $[2-6]$ $[2-6]$ $[2-6]$.

The small intersection graph of a module [\[13](#page-7-5)] is another principal graph associated to a ring. The small intersection graph of submodules of a module U, indicated by $\Gamma(U)$ is a graph having the set of all nontrivial submodules of U asits vertex set and two vertices N and L are adjacent if and only if N∩L is small in U.

Inspired by preceding studies on the intersection graph of algebraic structures, in this paper, we defined $\Gamma_{\delta}(U)$ the δ -small intersection graph of submodules of a module.

In Section [2,](#page-2-0) we show that $\Gamma_{\delta}(U)$ is complete if either U is a module and direct sum of two simple modules or U is δ -hollow module. Also, if U is a δ -supplemented module, then $\text{diam}(\Gamma_{\delta}(U)) \leq 2$. We proved that if $|\Gamma_{\delta}(U)| > 3$, then $\Gamma_{\delta}(U)$ is a star graph proved that if $|\Gamma_{\delta}(U)| \geq 3$, then $\Gamma_{\delta}(U)$ is a star graph

if and only if $\delta(U)$ is a non-zero simple δ -small submodule of U where every pair of non-trivial submodules of U have non δ -small intersection. We establish that if $|\mathcal{S}_{\delta}(U)| \in \{1,2\}$ and under some condition, then $\Gamma_{\delta}(U)$ is a planar graph. Also, $\Gamma_{\delta}(U)$ is not a planar graph, whenever $|S_{\delta}(U)| \geq 3$. In Section [3,](#page-6-0) we show that if $U = \bigoplus_{i=1}^n U_i$, with U_i are distinct simple left R-module, then $\Gamma_i(U)$ is a planar distinct simple left R-module, then $\Gamma_{\delta}(U)$ is a planar graph if and only if $n \leq 4$.
Throughout this paper.

Throughout this paper R is a commutative ring with identity besides U is a unitary left R-module. We mean a non-trivial submodule of U is a non-zero proper submodule of U . A submodule N (we write $N \leq U$) of U is called small in U (we write $N \ll U$), if for every submodule $I \leq U$ with $N+I=U$ implies for every submodule $L \leq U$, with $N + L = U$ implies
that $L = U$. A submodule $L \leq U$ is said to be essential that $L = U$. A submodule $L \leq U$ is said to be essential
in H, indicated as $L \leq U$ if $L \cap N = 0$ for every nonin *U*, indicated as $L \leq_e U$, if $L \cap N = 0$ for every non-
zero submodule $N \leq U$. A module *U* isnamed sinzero submodule $N \leq U$. A module U isnamed sin-
qular if $U \cong \frac{K}{2}$ for some module K and an essential gular if $U \cong \frac{K}{L}$ for some module K and an essential submodule $L \leq_{e} K$. Following Zhou [[17\]](#page-7-6), a submodule N of a module *U* is called a δ -small submodule (we N of a module U is called a δ -small submodule (we write $N \ll_{\delta} U$), if, whenever $U = N + X$ with $\frac{U}{X}$ sin-
gular, we have $X = U$ It is obvious that every small gular, we have $X = U$. It is obvious that every small submodule or projective semisimple submodule of U is δ -small in U. A nonzero R-module U is called hollow [resp., δ -hollow], if every proper submodule of U is small [resp., δ -small] in U [\[14\]](#page-7-7). A non-zero module U named local if it is hollow and finitely generated $[16]$ $[16]$. A submodule P of a module U is

Received 2 March 2023; revised 5 April 2023; accepted 7 April 2023. Available online 23 May 2023

E-mail address: ahmedha_math@utq.edu.iq.

maximal iff it is not properly contained in any other submodule of U. An R-module U is said to be local if it has a unique maximal submodule. The set is of maximal submodules of U is denoted by max (U) . The Jacobson radical of an R-module U, indicated by $Rad(U)$, is the intersection of all maximal submodules of U . By $\delta(U)$ we will denote the sum of all δ -small submodules of U as in [17, Lemma 1.5 (1)]. Also, $\delta(R) = \delta(R)$. Since Rad (U) is the sum of all small submodules of U, it follows that $Rad(U) \leq \delta(U)$
for a module U. A module U is called δ -local if for a module U. A module U is called δ -local if $\delta(U) \ll_{\delta} U$ and $\delta(U)$ is maximal [[14\]](#page-7-7). The module U is named simple if it has no proper submodules, and U is said to be semisimple if it is a direct sum of simple submodules. The socle of a module U, denoted by $Soc(U)$, is the sum of all simple submodules of U. The references for module theory are [[16](#page-7-8)[,17\]](#page-7-6); for graph theory is [\[8](#page-7-9)].

For a graph Γ , $V(\Gamma)$ and $E(\Gamma)$ denote the set of vertices and edges, respectively. The set of vertices adjacent to vertex v of the graph Γ is called the neighborhood of v besides indicated by $N(v)$. The order of Γ is the number of vertices of Γ besides we indicated it by $|\Gamma|$. Γ is finite, if $|\Gamma| < \infty$, else, Γ is infinite. If u and v are two adjacent vertices of Γ , then we write $u - v$, i.e. $\{u,v\} \in E(\Gamma)$. The degree of a vertex ν in a graph Γ , indicated by deg (ν) , is the number of edges incident with v . Let u and v be vertices of Γ . An u , $v-$ path is a path (trail) with starting vertex u and ending vertex v. For distinct vertices u and v, $d(u, v)$ is the least length of an u , v path. If Γ has no such a path, then $d(u,v) = \infty$. The diameter of Γ , indicated by diam (Γ) , is the supremum of the set $\{d(x, y): u \text{ and } v\}$ are distinct vertices of Γ . A cycle in a graph is a path of length at least 3 through distinct vertices which begins and ends at the same vertex. The girth of a graph Γ , indicated by $gr(\Gamma)$, is the length of a shortest cycle in Γ , provided Γ contains a cycle; otherwise; $gr(\Gamma) = \infty$. A graph is said to be connected (or joined), if there is a path between every pair of vertices of the graph. A joined graph which does not contain a cycle is named a tree. If Γ is a tree consisting of one vertex adjacent to all the others then Γ is named star graph. Γ is complete if it is connected with diam $(\Gamma) \leq 1$. A complete graph with *n* distinct vertices indicated by K - A cligraph with *n* distinct vertices, indicated by K_n . A clique of a graph is its maximal complete subgraph and the number of vertices in the largest clique of graph Γ , symbolized by $\omega(\Gamma)$, is called the clique number of Γ .

Lemma 1.1. [[17\]](#page-7-6) Let $Z \le U$. The next are univelent: equivalent:

 (1) Z \ll_{δ} U.

(2) If $U = W + Z$, then $U = W \oplus Y$ for a projective semisimple submodule Y with $Y \le Z$.

Lemma 1.2. $[17,$ $[17,$ Lemma 1.3] Let U be an R-module.

- (1) For submodules *N*, *Z*, *L* of *U* with $Z \le N$, we have have
	- i. $N \ll_{\delta} U$ iff $Z \ll_{\delta} U$ and $N/Z \ll_{\delta} U/Z$. ii. $N + L \ll_{\delta} U$ iff $N \ll_{\delta} U$ and $L \ll_{\delta} U$.
- (2) $Z \ll_{\delta} U$ and $f : U \rightarrow N$ is a homomorphism, then $f(Z) \ll_{\delta} N$. In particular, if $Z \ll_{\delta} U \leq N$, then
 $Z \ll_{\delta} N$ $Z \ll_{\delta} N$.
- (3) Let $Z_1 \leq U_1 \leq U_1$, $Z_2 \leq U_2 \leq U$ and $U = U_1 \oplus U_2$.
Then $Z_1 \oplus Z_2 \ll 1$, $\oplus U_2$ if $Z_1 \ll 1$, and Then $Z_1 \oplus Z_2 \ll_{\delta} U_1 \oplus U_2$ iff $Z_1 \ll_{\delta} U_1$ and $Z_2 \ll_{\delta} U_2$.

Lemma 1.3. [[17,](#page-7-6) Lemma 1.5] Let U and N be modules.

- (1) $\delta(U) = \sum \{L \leq U | L \text{ is a } \delta\text{-small submodule of } U\}.$
(2) If $f: U \to N$ is an *R*-homomorphism then (2) If $f: U \rightarrow N$ is an R-homomorphism, then
- $f(\delta(U)) \subseteq \delta(N)$. Also, $\delta\left(R\right)U \subseteq \delta(U)$.
- (3) If $U = \bigoplus_{i \in I} U_i$, then $\delta(U) = \bigoplus_{i \in I} \delta(U_i)$.
- (4) If every proper submodule of U is contained in a maximal submodule of U , then $\delta(U)$ is the unique largest δ -small submodule of U.

2. Connectedness and completeness

In this Section, we generalizing the definition of [\[13](#page-7-5)], we consider a graph $\Gamma_{\delta}(U)$ as follows:

Definition 2.1. Let U be an R-module. The δ -small intersection graph of U, symbolized by $\Gamma_{\delta}(U)$, is defined to be a simple graph whose vertices are in one-to-one correspondence with all non-trivial submodules of U and two vertices N and L are adjacent, and we write $N - L$, if and only if $N∩L \ll_{\delta} U.$

Remark 2.2.

- (1) Consider the \mathbb{Z} -module \mathbb{Z}_6 . The nonzero proper submodules of \mathbb{Z}_6 are $2\mathbb{Z}_6$ and $3\mathbb{Z}_6$. Obviously, $2\mathbb{Z}_6$ ∩3 $\mathbb{Z}_6 = 0 \ll_{\delta} \mathbb{Z}_6$ and so $\Gamma_{\delta}(\mathbb{Z}_6)$ is $2\mathbb{Z}_6 - 3\mathbb{Z}_6$.
- (2) It is clear that the graph $\Gamma(U)$ introduced in [\[13](#page-7-5)] is a subgraph of $\Gamma_{\delta}(U)$.
- (3) The δ -small submodules of a singular module are small submodules $[17]$ $[17]$ $[17]$. Clearly when U is a singular module, we get that $\Gamma_{\delta}(U)$ is the small intersection graph $\Gamma(U)$ of U introduced in [[13](#page-7-5)].

A null graph is a graph whose vertices are not adjacent to each one other (i.e., edgeless graph).

Theorem 2.3. Let U be a not simple module. Then $\Gamma_{\delta}(U)$ is a null graph if and only if every pair of nontrivial submodules of U , have non δ -small intersection.

Proof. Assume $\Gamma_{\delta}(U)$ is an edgeless graph. Presume for contrary that there exist $A, B \leq U$ such that $A \cap B \ll U$. If A t that time $A - B$ bence $\Gamma_v(U)$ is not $A \cap B \ll_{\delta} U$. At that time $A - B$, hence $\Gamma_{\delta}(U)$ is not null which is a contradiction to the hypothesis null, which is a contradiction to the hypothesis " $\Gamma_{\delta}(U)$ is an edgeless graph". The reverse is easy.

Example 2.4. $\Gamma_{\delta}(\mathbb{Z}_4)$ and $\Gamma_{\delta}(\mathbb{Z})$ are edgeless graphs.

Proposition 2.5. Let U be an R-module. At that point $\Gamma_{\delta}(U)$ is complete, if one of the following holds.

- (1) If U is δ -hollow.
- (2) If $U = U_1 \oplus U_2$ is a module, where U_1 and U_2 are simple R-modules.

Proof. (1) Let U be a δ -hollow module. Presume that A_1 , A_2 are two different vertices of the graph $\Gamma_{\delta}(U)$. From this time A₁ and A₂ are two nonzero δ -small submodules of U. As $A_1 \cap A_2 \leq A_i$, for $i =$
1.2 by Lemma 1.2 $A_2 \cap A_2 \ll i \text{ If hence } \Gamma_i(U)$ is a 1, 2, by Lemma 1.2, $A_1 \cap A_2 \ll_{\delta} U$, hence $\Gamma_{\delta}(U)$ is a complete graph.

(2) Assume that $U = U_1 \oplus U_2$ with U_1 besides U_2 are simple R-modules. So, $U_1 + U_2 = U$ and $U_1 \cap$ $U_2 = \{0\}$. Then every non-trivial submodule of U is simple. Let \mathfrak{A} , \mathfrak{B} be binary different vertices of $\Gamma_{\delta}(U)$. At that moment they are the non-trivial submodules of U which are simple besides minimal. Furthermore, $\mathfrak{A} \cap \mathfrak{B} \leq \mathfrak{A}, \mathfrak{B}$ and if $\mathfrak{A} \cap \mathfrak{B} \neq (0)$, then minimality of \mathfrak{A} and \mathfrak{B} implies that $\mathfrak{A} \cap \mathfrak{B} = \mathfrak{A} = \mathfrak{B}$ minimality of $\mathfrak A$ and $\mathfrak B$ implies that $\mathfrak A \cap \mathfrak B = \mathfrak A = \mathfrak B$, a contradiction. Thus, $\mathfrak{A} \cap \mathfrak{B} = (0) \ll_{\delta} U$, henceforth $\Gamma_{\delta}(U)$ is complete.

By Part 1 of Proposition 2.5, we have the next corollary.

Corollary 2.6. Let R be a ring and U be a module over R. Then the next hold:

- (1) If $V(\Gamma(U))$ is a totally ordered set, at that time a graph $\Gamma(U)$ is complete.
- (2) If U is a δ -local module, at that point the graph $\Gamma_{\delta}(U)$ is complete.
- (3) Every one nonzero δ -small submodule of U is adjacent to all other vertices of $\Gamma_{\delta}(U)$ besides the induced subgraphs on the sets of δ -small submodules of U are cliques.

Proof. (1) Suppose $V(\Gamma(U))$ is a totally ordered set. Then all two nontrivial submodules of U are comparable. Evidently, for all $\mathcal{R} \leq U$, $\mathcal{R} \ll U$, besides so $\mathcal{R} \ll U$. Hence, *U* is a δ -bollow R-module. So, by $\mathcal{R} \ll_{\delta} U$. Hence, U is a δ -hollow R-module. So, by Proposition 2.5 (1), $\Gamma_{\delta}(U)$ is complete.

(2) Suppose that U is a δ -local R-module, at that time $\delta(U) \ll_{\delta} U$ besides $\delta(U)$ is maximal. Now, let w be a nonzero submodule of U. To prove that $w \leq \delta(U)$ by contrary way, assume m is not subset of $\delta(U)$, by contrary way, assume w is not subset of $\delta(U)$, so $\delta(U) + w = U$ since $\delta(U)$ is maximal. Hence

 $w = U$ since $\delta(U) \ll_{\delta} U$, a conflict. Thus, $w \leq \delta(U)$.
So m is δ -small submodule of U. Thus, U is δ -bol-So, w is δ -small submodule of U. Thus, U is δ -hollow. So, by Proposition 2.5 (1), $\Gamma_{\delta}(U)$ is complete. (3) Evident.

Example 2.7. For every $c \in \mathbb{Z}$ with $c \geq 2$ besides for all prime number p , \mathbb{Z}_{p^c} is a local \mathbb{Z} -module, then it is hollow and so is δ -hollow. Also, let $R = \mathbb{Z}$, p be a prime and $U = \mathbb{Z}_{p^{\infty}}$, the Pr \ddot{u} fer p-group, then every proper submodule of R-module U is δ -small in U . Moreover, $\delta(U) = U$. Hence for every prime number *p*, the Z-module $\mathbb{Z}_{p^{\infty}}$ is δ -hollow. By Proposition 2.5 (1), $\Gamma_{\delta}(\mathbb{Z}_{p^c})$ and $\Gamma_{\delta}(\mathbb{Z}_{p^{\infty}})$ are complete graphs.

Remark 2.8 $[17]$ $[17]$. For a ring R,

- (1) $\delta(R)$ = the intersection of all maximal essential left ideals of R.
- (2) $\delta(R)$ = the largest δ -small left ideal of R.
- (3) $\delta(R) = R$ if and only if R is a semisimple ring, see [17, Corollary 1.7].

Proposition 2.9. Let R be an integral domain with $\delta(R) \neq 0$ besides let U be a finitely generated torsionfree R-module. Then $\Gamma_{\delta}(U)$ is connected and diam $(\Gamma_{\delta}(U)) \leq 2$.
Proof Since II

Proof. Since U is finitely generated, then $\delta(U)$ is the largest δ -small submodule of U according to Lemma 1.3(4). Also, the largest δ -small left ideal of R is $\delta(R)$ by Remark 2.8. By Lemma 1.3(2), $\delta(R)U \leq \delta(U)$. Thus, $\delta(R)U \ll_{\delta} U$. Since U is torsion-
free and $\delta(R) \neq 0$ then $\delta(R)U \neq 0$ Therefore $\delta(R)U$ is free and $\delta(R) \neq 0$ then $\delta(R)U \neq 0$. Therefore, $\delta(R)U$ is a vertex in $\Gamma_{\delta}(U)$. But $X \cap \delta(R)U \ll_{\delta} U$ for every nonzero submodule X of U by Lemma 1.2(1). So, there exists an edge among vertex $\delta(R)U$ besides X of $\Gamma_{\delta}(U)$. Also, for all two vertices X, Y in the graph $\Gamma_{\delta}(U)$, there exists a path $X - \delta(R)U - Y$ of length 2 in $\Gamma_{\delta}(U)$. This completes the proof.

Theorem 2.10. Let a ring R be a sum $R = \bigoplus_{i \in I} T_i$ of simple left ideals T_i , $i \in I$. At that point the next statements hold:

- (1) diam $(\Gamma_{\delta}(R)) = 1$,
- (2) The graph $\Gamma_{\delta}(R)$ is a complete graph.

Proof. (1) Let $R = \bigoplus_{i \in I} T_i$, where each T_i are simple left ideals, $i \in I$. By Remark 2.8(3), we have $\delta(R) = R$. So, each T_i is δ -small submodule of $_R R$. Now, let T_i and T_j are two non-zero ideals of R, then $T_i \cap T_j$ is δ -small in _R R, and thus, there exists an edge between the vertices T_i and T_j in $\Gamma_\delta(R)$, for all $i, j \in I$. Hence, the graph $\Gamma_{\delta}(R)$ is connected besides diam $(\Gamma_{\delta}(R)) = 1.$

(2) It follows from the proof of (1).

Definition 2.11. [[12](#page-7-10)] Let U be a module besides let N and L be submodules of U. L is named a δ -supplement of N in U if $U = N + L$ and $N \cap L \ll_{\delta} L$ (and so N∩L \ll_{δ} U). N is named a δ -supplement submodule if N is a δ -supplement of some submodule of U. U is named a δ -supplemented if every submodule of U has a δ -supplement in U .

Proposition 2.12. Let $\mathbb{A} \leq U$. Then any δ -supple-
ent of \mathbb{A} in *U* is adiacent to \mathbb{A} in $\Gamma_2(U)$ ment of ℓ in U is adjacent to ℓ in $\Gamma_{\delta}(U)$.

Proof. Let ℓ be a submodule of U and let ℓ δ -supplement of ℓ in U. Hence $U = \ell + \ell$ and $\ell \cap$ $g \ll_{\delta} g$, and so $h \cap g \ll_{\delta} U$. Thus g adjacent to h in $\Gamma_{\delta}(U)$.

We now state-owned our next result, which gives us certain information on the structure of the δ -small intersection graphs of δ -supplemented modules.

Proposition 2.13. Let U be a δ -supplemented module. Then $\Gamma_{\delta}(U)$ is connected and diam($\Gamma_{\delta}(U)$) < 2 diam $(\Gamma_{\delta}(U)) \leq 2$.
Proof Let N I

Proof. Let N, L are submodules of U . Since U is δ -supplemented, then there exists submodule K of U such that $N + K = U$, $N \cap K \ll_{\delta} K$, and so $N \cap K \ll_{\delta} U$. One can consider binary likely cases for $N \cap K$.

Case 1: If $N∩K = (0)$, then $N⊕K = U$.

Now, if $L \leq N$, then L∩K ≪_ô U. Thus $L - K - N$ is a
oth of length 2 in $\Gamma_2(I)$. If $I \leq K$ then $I \cap N \ll_2 I$ path of length 2 in $\Gamma_{\delta}(U)$. If $L \leq K$, then $L \cap N \ll_{\delta} U$.
Thus N and L are adjacent vertices in the graph Thus N and L are adjacent vertices in the graph $\Gamma_{\delta}(U)$. Hence, $\Gamma_{\delta}(U)$ is joined besides diam($\Gamma_{\delta}(U)$) < 2 diam $(\Gamma_{\delta}(U)) \leq 2$.
Case 2: If NoK

Case 2: If $N∩K ≠ (0)$. Since $N∩K$ is a δ -small submodule of U, thus $N - N \cap K - L$ is a path of length 2 in $\Gamma_{\delta}(U)$. Hence, $\Gamma_{\delta}(U)$ is joined besides diam $(\Gamma_{\delta}(U)) \leq 2$.
The next example

The next examples show there are connected graphs $\Gamma_{\delta}(U)$ with diam $(\Gamma_{\delta}(U)) \geq 2$ whenever U is not δ-supplemented.

Example 2.14. (1) The Z-module $U = \bigoplus_{i=1}^{\infty} U_i$ with $U - \mathbb{Z}$ where *n* is prime number is not δ each $U_i = \mathbb{Z}_{p^{\infty}}$ where p is prime number is not δ -supplemented see [\[12](#page-7-10)]. It is easy to see that $\Gamma_{\delta}(U)$ is connected and diam $(\Gamma_{\delta}(U)) \geq 2$.

(2) The \mathbb{Z} -module \mathbb{Q} is not δ -supplemented see [\[12](#page-7-10)]. Now, from [[12\]](#page-7-10) that Let $\mathbb{Q}_1 = \{a/b \in \mathbb{Q} \mid 2 \text{ does }$ not divide b} and $\mathbb{Q}_2 = \{a/b \in \mathbb{Q} \mid 2 \text{ divides } b\}$. Then $\mathbb{Q} = \mathbb{Q}_1 + \mathbb{Q}_2$. Since \mathbb{Q}/\mathbb{Q}_1 and \mathbb{Q}/\mathbb{Q}_2 are singular \mathbb{Z} -modules, \mathbb{Q}_1 and \mathbb{Q}_2 are not δ -small submodules in Q . Hence, any proper submodule L of Q with $\mathbb{Q}_1 \leq L$ we have L is not adjacent to \mathbb{Q}_1 . So, $\Gamma_{\delta}(\mathbb{Q}) \geq$
2. But $\Gamma_{\delta}(\mathbb{Q})$ is connected graph 2. But $\Gamma_{\delta}(\mathbb{Q})$ is connected graph.

Lemma 2.15. Let U be a module.

- (1) Let $N \leq U$ be a finitely generated submodule
with $N \leq \delta (U)$ Then $N \ll U$ with $N \leq \delta(U)$. Then $N \ll_{\delta} U$.
Let $N < U$ be a semisimple su
- (2) Let $N \leq U$ be a semisimple submodule with $N \leq$
 $\frac{\delta(U)}{\delta(U)}$. Then $N \ll U$ δ (*U*). Then $N \ll_{\delta} U$.

Proof. (1) Suppose that $N \leq U$ is finitely gener-
ed Then $N = \sum_{i=1}^{r} R_i$ for some $n \in N$ $1 \leq i \leq r$ ated. Then, $N = \sum_{i=1}^{r} R n_i$ for some $n_i \in N$, $1 \le i \le r$.

Since $Rn_i \leq \delta(U)$, $Rn_i \ll_{\delta} U$. According to Lemma $1.2 \text{ N} \ll_{\delta} U$ 1.2, $N \ll_{\delta} U$.

(2) By [[15,](#page-7-11) Lemma 2.2].

Proposition 2.16. For an R-module U with $\Gamma_{\delta}(U)$ and $\delta(U) \neq (0)$. The following conditions hold:

- (1) If N is a direct summand submodule of U with $(0) \neq \delta(N) \ll_{\delta} U$, then $\Gamma_{\delta}(U)$ contains at least one cycle of length 3.
- (2) If T is a non-trivial semisimple or finitely generated submodule of U contained in $\delta(U)$. At that time $d(T, \delta(U)) = 1$ and $d(T, L) = 1$ for every non-trivial submodule L of U.

Proof. (1) Since N is a direct summand of U , there is $Z \leq U$ such that $N \oplus Z = U$. Then $\delta(N) \oplus \delta(Z) = \delta(U)$ according to Lemma 1.3. Since $\delta(N) \leq N$ and $\delta(U)$, according to Lemma 1.3. Since $\delta(N) \le N$ and $N \circ \delta(Z) \le N \circ Z = (0)$ by the modular law $\delta(U) \circ N =$ $N \cap \delta(Z) \leq N \cap Z = (0)$, by the modular law, $\delta(U) \cap N = \delta(Z) + \delta(N) \cap N = \delta(N)$. Thus $[\delta(Z) + \delta(N)] \cap N = [\delta(Z) \cap N] + \delta(N) = \delta(N)$. Thus,
 $\delta(U) \cap N = \delta(N)$. Then $\delta(U) \cap N \ll_{\delta} U$. Also, $\delta(U)\cap N = \delta(N)$. Then $\delta(U)\cap N \ll_{\delta} U$. Also,
 $\delta(N) - N\Omega\delta(N) \ll_{\delta} U$ and $\delta(N) - \delta(N)\Omega\delta(U) \ll U$. $\delta(N) = N \cap \delta(N) \ll_{\delta} U$ and $\delta(N) = \delta(N) \cap \delta(U) \ll_{\delta} U$
and we have $d(N \delta(U)) = 1$ $d(N \delta(N)) = 1$ and and we have, $d(N, \delta(U)) = 1$, $d(N, \delta(N)) = 1$ and $d(\delta(N), \delta(U)) = 1$. Hence, $(N, \delta(N), \delta(U))$ is a cycle. Thus, $\Gamma_{\delta}(U)$ contains at least one cycle of distance 3.

(2) Let $T \leq U$ be a non-trivial semisimple or

itely concrated submodule At that moment by finitely generated submodule. At that moment by Lemma 2.15, $T \ll_{\delta} U$. Since $T \leq T - T \cap \delta(U) \ll_{\delta} U$ and since $T \cap I \leq T$ To $\ll_{\delta} U$. $T\leq \delta(U)$, $T = T \cap \delta(U) \ll_{\delta} U$ and since $T \cap L \leq T$, $T \cap L \ll_{\delta} U$ for every other non-trivial submodule I of U via every other non-trivial submodule L of U via Lemma 1.2. Hence $d(\delta(U), T) = 1$ and $d(L, T) = 1$.

Proposition 2.17. Let U be a R-module. If U has at least one non-zero δ -small submodule, at that point $\Gamma_{\delta}(U)$ is a connected graph besides
diam($\Gamma_{\delta}(U)$) < 2 diam $(\Gamma_{\delta}(U)) \leq 2$.
Proof Let E

Proof. Let $F \in \Gamma_{\delta}(U)$ be a non-zero δ -small submodule of U. Let A and B be two non-adjacent vertices of $\Gamma_{\delta}(U)$. It is clear that $A \cap F \leq F \ll_{\delta} U$, and $F \cap R \ll \epsilon U$ by $F \cap B \leq F \ll_{\delta} U$. Thus $A \cap F \ll_{\delta} U$, and $F \cap B \ll_{\delta} U$ by I emma 12 So $A - F - B$ is a trail of length 2 So Lemma 1.2. So, $A - F - B$ is a trail of length 2. So, $\Gamma_{\delta}(U)$ is a joined graph besides diam $(\Gamma_{\delta}(U)) \leq 2$.
Corollary 2.18 Let $\delta(U) \neq (0)$ if one of the nu

Corollary 2.18. Let $\delta(U) \neq (0)$, if one of the next holds. Then $\Gamma_{\delta}(U)$ is a joined graph,

- (1) There exists a non-trivial submodule of U which is semisimple or finitely generated contained in $\delta(U)$.
- (2) U is a finitely generated module.

Proof. (1) It follows from Proposition 2.17 and Lemma 2.15. (2) Clear.

Proposition 2.19. If $\Gamma_{\delta}(U)$ has no isolated vertex, then $\Gamma_{\delta}(U)$ is connected and diam $(\Gamma_{\delta}(U)) \leq 3$.
Proof Let A and B be two non-adjacent verti-

Proof. Let A and B be two non-adjacent vertices of $\Gamma_{\delta}(U)$. Since $\Gamma_{\delta}(U)$ has no isolated vertex, there exist submodules A_1 and B_1 such that $A \cap A_1 \ll_{\delta} U$ and

 $B \cap B_1 \ll_{\delta} U$. Now, if $A_1 \cap B_1 \ll_{\delta} U$, then $A - A_1 - B_1 - B$ is a path of length 3. Otherwise $A A_1 \cap B_1 - B$ is a trail of size 2. Showed that diam $(\Gamma_{\delta}(U)) \leq 3$ besides $\Gamma_{\delta}(U)$ is a joined graph.
Proposition 2.20 Let *U* be a not simple *R*-modi

Proposition 2.20. Let U be a not simple R-module which is semisimple R-module. At that point the next declarations hold:

- (i) $\Gamma_{\delta}(U)$ has no isolated vertex.
- (ii) $\Gamma_{\delta}(U)$ is joined besides diam $(\Gamma_{\delta}(U)) \leq 3$.

Proof. (i) Let Z be a vertex of the graph $\Gamma_{\delta}(U)$. Since U is a semisimple module, then every submodule of U is a direct summand of U by [16, 20.2, p. 166]. Thus there exists a submodule Y of U such that $U = Z \oplus Y$. Hence $Z \cap Y = (0) \ll_{\delta} U$ besides as a result, there exists an edge among vertex Z of $\Gamma_{\delta}(U)$ besides another vertex of $\Gamma_{\delta}(U)$. At that time Z is non-isolated vertex. So, $\Gamma_{\delta}(U)$ has no isolated vertex.

(ii) By Proposition 2.19 besides Part (i).

Now we use $\mathcal{S}_{\delta}(U)$ which symbolizes the set of all non-zero δ -small submodules of U.

Proposition 2.21. Let n be a positive integer. In *R*-module *U* with $|\mathcal{S}_{\delta}(U)| = n$ and $|\Gamma_{\delta}(U)| \geq 2$.

- (i) If $N \in \mathbb{S}_{\delta}(U)$, then deg $(N) \neq 0$.
- (ii) $\omega(\Gamma_{\delta}(U)) \geq n$.
- (iii) If $\omega(\Gamma_{\delta}(U)) < \infty$, then the number of δ -small submodules of U is finite.

Proof. (i) Let $N \in \mathbb{S}_{\delta}(U)$. Suppose that the order of $\Gamma_{\delta}(U)$ is $|\Gamma_{\delta}(U)| = n \geq 2$ where *n* is integer number. Let K be any non-zero submodule of U. Then $K \cap$ $N \le N \ll_{\delta} U$. By [17, Lemma 1.3(1)], K∩N $\ll_{\delta} U$ and thus an edge exists among vertex M of E.(U) and thus an edge exists among vertex N of $\Gamma_{\delta}(U)$ and another vertex of $\Gamma_{\delta}(U)$. At that point N is cannot an isolated vertex. Thus, deg $(N) \neq 0$.

(ii) Let $\mathcal{S}_{\delta}(U) = \{N | N \ll_{\delta} U\}$ and let $|\mathcal{S}_{\delta}(U)| = n$. Suppose that Z and W are two distinct elements of $\mathcal{S}_{\delta}(U)$. Then Z and W are non-zero δ -small submodules of U. Thus $Z \cap W \ll_{\delta} U$ according to [17, Lemma 1.3(1)]. So, Z and W are adjacent vertices. Thus, the induced subgraph on the set $\mathcal{S}_{\delta}(U)$ is a complete subgraph of $\Gamma_{\delta}(U)$. From this time, $\omega(\Gamma_{\delta}(U))\geq n.$

(iii) It is clear from (ii).

Theorem 2.22. Let $\delta(U)$ be a non-zero simple δ -small submodule of U and let $|\Gamma_{\delta}(U)| \geq 2$. Then $\Gamma_{\delta}(U)$ is a star graph whenever $\Gamma_{\delta}(U)$ is a tree graph.

Proof. Since $\delta(U) \neq 0$, then $\delta(U)$ is a vertex in $\Gamma_{\delta}(U)$. Now, $\delta(U)$ is simple δ -small, so $\delta(U)$ a unique non-zero δ -small submodule of U. But, $\delta(U) \cap$ $N \ll_{\delta} U$ for every $\in V(\Gamma_{\delta}(U))$. Thus then $\Gamma_{\delta}(U)$ contains a vertex $\delta(U)$ which is adjacent to each other vertex. Now, suppose that $I \neq \delta(U)$ and $J \neq \delta(U)$ are two distinct vertices of $\Gamma_{\delta}(U)$. Now, if I∩J ≪ $_{\delta}$ U. Then $I - \delta(U) - J$, which is a contradiction since $\Gamma_{\delta}(U)$ is a tree. Thus, I∩J is not a δ -small submodule of U. So, I and J are not adjacent. Thus, $\Gamma_{\delta}(U)$ is star with center $\delta(U)$.

Let Γ be a graph. The chromatic number of Γ is defined to be the smallest number of colors $\chi(\Gamma)$ needed to color the vertices of Γ so that no two adjacent vertices share the same color. One has the next corollary by Theorem 2.22.

Corollary 2.23. Let U be a module with $0 \neq \delta(U) \ll_{\delta} U$ and $|\Gamma_{\delta}(U)| \geq 3$. Then the next conditions are equivalent:

- (1) $\Gamma_{\delta}(U)$ is a star graph,
- (2) $\Gamma_{\delta}(U)$ is a tree,
- (3) $\chi(\Gamma_{\delta}(U)) = 2$,
- (4) $\delta(U)$ is a simple submodule of U such that every couple of non-trivial submodules of U, have non d-small intersection.

Proof. (1) \rightarrow (2) and (2) \rightarrow (3) The implications are obvious.

(3) \rightarrow (4) On contrary, suppose $0 \neq K \leq \delta(U)$. At at point $K \leq \delta(U)$ if $I \in V(\Gamma_2(U))$ it is easy to see that point $K \ll_{\delta} U$. If $L \in V(\Gamma_{\delta}(U))$. It is easy to see that $(N, \delta(U), L)$ is a circuit (cycle) of length 3 in $\Gamma_{\delta}(U)$, which contradicts $\chi(\Gamma_{\delta}(U)) = 2$. As a result, $\delta(U)$ is simple. Now, take up that $Y, \varpi \in V(\Gamma_{\delta}(U))$ such that $\varpi \cap Y \ll_{\delta} U$. (ϖ , $\delta(U)$, Y) is a circuit in $\Gamma_{\delta}(U)$, which contradicts $\chi(\Gamma_{\delta}(U))=2$.

 $(4) \rightarrow (1)$ It is obvious that $\delta(U)$ is adjacent to each other vertex in $\Gamma_{\delta}(U)$. Now, suppose that $N \neq \delta(U)$ and $L \neq \delta(U)$ are two distinct vertices of $\Gamma_{\delta}(U)$, such that N and L are adjacent. Thus, $X \cap Y \ll_{\delta} U$, a contradiction. Hence, $\Gamma_{\delta}(U)$ is a star graph.

Proposition 2.24. Let U be a module and $|\mathbb{S}_{\delta}(U)| \geq 1$. If $\Gamma_{\delta}(U)$ does not contain a cycle, then $\Gamma_{\delta}(U) = K_1$ or $\Gamma_{\delta}(U)$ is a star graph.

Proof. Supposing that the graph $\Gamma_{\delta}(U)$ contains no a cycle. To prove $|S_{\delta}(U)| < 2$, by contrary way, let $Z \ll_{\delta} U$ besides $W \ll_{\delta} U$. So $Z + W \ll_{\delta} U$ by Lemma 1.2, and hence, $Z - (Z + W) - W$ is a cycle of length 3, which is a illogicality. Then $|\mathbb{S}_{\delta}(U)| < 2$. As $|\mathcal{S}_{\delta}(U)| \geq 1$, then $|\mathcal{S}_{\delta}(U)| = 1$. Hence, U has a unique non-zero δ -small submodule. Let $N \in \mathbb{S}_{\delta}(U)$. For every vertex *L* of $\Gamma_{\delta}(U)$, if $L = N$, then $\Gamma_{\delta}(U) \cong K_1$ and if $L \neq N$, as $L \cap N \ll_{\delta} U$, we deduce $\Gamma_{\delta}(U) \cong K_2$. Let $\Psi = \{v_i | v_i \neq N, i \in I\}$. At that time every two random distinct vertices v_i and v_j , $i \neq j$, are not adjacent and for $i \neq j$, $v_i - N - v_j$ is a path besides hence $\Gamma_{\delta}(U)$ is a star graph.

Theorem 2.25. Let $\Gamma_{\delta}(U)$ be a graph of a module U. If $|\mathcal{S}_{\delta}(U)| \geq 2$, then $\Gamma_{\delta}(U)$ contains at least one cycle besides $gr(\Gamma_{\delta}(U))=3$.

Proof. Presume that $|S_{\delta}(U)| \geq 2$. At that time U has at least two nonzero δ -small submodules, at a guess T_1 and T_2 . Since $T_1 \cap T_2 \le T_i$, for $i = 1, 2$, by
Lemma 1.2, $T_1 \cap T_2 \ll 1$, Also, $T_1 \cap (T_1 \cap T_2) \ll 1$, and Lemma 1.2, $T_1 \cap T_2 \ll_{\delta} U$. Also, $T_1 \cap (T_1 \cap T_2) \ll_{\delta} U$ and $T_2 \cap (T_1 \cap T_2) \ll_{\delta} U$. We consider two probable cases for $T_1 \cap T_2$.

Case 1: If $T_1 \cap T_2 \neq (0)$, then $d(T_1, T_2) = 1$, $d(T_1, T_1 \cap T_2) = 1$ and $d(T_2, T_1 \cap T_2) = 1$. Thus $(T_1, T_1 \cap T_2, T_2)$ is a cycle of size 3. Also by Lemma 1.2, $T_1 + T_2 \ll_{\delta} U$ and since $T_1 \cap (T_1 + T_2) \ll_{\delta} U$ and $T_2 \cap$ $(T_1 + T_2) \ll_{\delta} U$, $(T_1, T_1 + T_2, T_2)$ is a cycle of length 3. Similarly, $(T_1 \cap T_2, T_1, T_1 + T_2)$ and $(T_1 \cap T_2, T_2, T_1 + T_2)$ are cycles of length 3 and length $(T_1, T_1 + T_2, T_2, T_1 \cap T_2, T_1)$ is a cycle of length 4.

Case 2: If $T_1 \cap T_2 = (0)$, then $(T_1, T_1 + T_2, T_2)$ is a cycle of size 3 in the graph $\Gamma_{\delta}(U)$. As a result, $\Gamma_{\delta}(U)$ contains at least one cycle and so $gr(\Gamma_{\delta}(U)) = 3$.

Example 2.26. Let $U = Z \oplus F \oplus K$ be a semisimple module. Then, the subgraph $Z - F - K - Z$ is a clique. Also, $gr(\Gamma_{\delta}(U)) = 3$.

Let Γ is a joined graph and let X is a vertex of Γ , X is named a cut vertex of Γ if there are vertices Z besides W of Γ such that X is in every one Z, Wpath. Equally, X is a cut vertex of Γ if $\Gamma - \{X\}$ is not joined for a joined graph Γ .

Proposition 2.27. $\Gamma_{\delta}(U)$ has no cut vertex whenever $|\mathcal{S}_{\delta}(U)| \geq 2$.

Proof. Take up T a cut vertex of $\Gamma_{\delta}(U)$, as a result $\Gamma_{\delta}(U)\setminus\{T\}$ is not joined. As a result there exist vertices F , K with T lies on every single trail from F to K. Since $|S_{\delta}(U)| \geq 2$, then U has at least two nonzero δ -small submodules, assume $(0) \neq N_1 \ll_{\delta} U$, $(0) \neq N_2 \ll_{\delta} U$. Thus $F \cap N_1 \ll_{\delta} U$, $N_1 \cap N_2 \ll_{\delta} U$ and $N_2 \cap$ $K \ll_{\delta} U$. $F - N_1 - N_2 - K$ is a trail in $\Gamma_{\delta}(U) \setminus \{T\}$, a illogicality. As a result $\Gamma_{\delta}(U)$ has no cut vertex.

3. Domination and planarity of $\Gamma_{\delta}(U)$

In this Section, we study domination number and the planarity of $\Gamma_{\delta}(U)$. We recall that for a graph Γ , a subset D of the vertex-set of Γ is called a dominating set (or DS) if every vertex not in D is adjacent to a vertex in D. The domination number, γ (Γ), of Γ is the minimum cardinality of a dominating set of Γ , [\[11](#page-7-12)]. Here, a subset D of the vertex set $V(\Gamma_{\delta}(U))$ is a DS iff for any nontrivial submodule N of U there is a L in D such that $N \cap L \ll_{\delta} U$.

Lemma 3.1. The next hold for an R-module U with $|\Gamma_{\delta}(U)|\geq 2$:

(1) If $D\subseteq V(\Gamma_{\delta}(U))$ with either there exists a vertex $X \in D$ which $X \cap Y = (0)$, for every one vertex $Y \in \mathbb{R}$ $V(\Gamma_{\delta}(U)) \setminus D$ or D contains at least one δ -small submodule of U. Then D is a DS in $\Gamma_{\delta}(U)$.

(2) If $|S_{\delta}(U)| > 1$, then for each $Z \neq 0$ with $Z \ll_{\delta} U$, $\{Z\}$ is a DS besides $\gamma(\Gamma_{\delta}(U)) = 1$.

Proposition 3.2. Let $U = N \oplus L$ be an R-module, where N and L are simple R-modules. Then $\gamma(\Gamma_\delta(U))=1.$

Proof. Assume $U = N \oplus L$, with N and L are simple R-modules. By Proposition 2.3 (1), is a complete graph $\Gamma_{\delta}(U)$. Let α be a random vertex of $\Gamma_{\delta}(U)$. At that time for every different vertex Y of $\Gamma_{\delta}(U)$, $\alpha \cap Y \ll_{\delta} U$, so $\{\alpha\}$ is a DS besides $\gamma(\Gamma_{\delta}(U)) = 1$.

Proposition 3.3. Let $\delta(U) \neq 0$ of a finitely generated R-module U. Then $\{\delta(U)\}\$ is a dominating set of $\Gamma_{\delta}(U)$ and so the graph $\Gamma_{\delta}(U)$ is joined $(=connected).$

Proof. Assume $\Re \in \Gamma_{\delta}(U)$. If \Re is δ -small then $\delta(U)$ is adjacent to \Re . Now, if \Re is not δ -small. Since $\delta(U) \neq 0$ in finitely generated module, at that point $\delta(U) \ll_{\delta} U$. So, $\Re \cap \delta(U) \ll_{\delta} U$. So, \Re is adjacent to $\delta(U)$. This implies that $\{\delta(U)\}\$ is a dominating set of $\Gamma_{\delta}(U)$, so $\Gamma_{\delta}(U)$ is connected as obligatory.

Theorem 3.4. Let $|\mathcal{S}_{\delta}(U)| \geq 2$ besides $|\Gamma_{\delta}(U)| \geq 3$ of a module U. We have:

- (1) If μ and λ are two δ -small submodules of U then there exists $\psi \in V(\Gamma_{\delta}(U))$ such that $\psi \in N(\mu) \cap N(\lambda)$.
- (2) The graph $\Gamma_{\delta}(U)$ has at least one triangle.

Proof. It is clear.

Proposition 3.5. The next statements are equivalent for an R-module U:

- (1) If $\{\mu,\lambda\} \in E(\Gamma_{\delta}(U))$, then there is no $\psi \in V(\Gamma_{\delta}(U))$ such that $\psi \in N(\mu) \cap N(\lambda)$.
- (2) U has at most one nonzero δ -small submodule such that $\hbar \cap h$ is not a δ -small for every couple of non- δ -small nontrivial submodules \hbar , h of U.
- (3) The graph $\Gamma_{\delta}(U)$ has no triangle.

Proof. (1) \Rightarrow (2) Take up that for all two adjacent vertices of $\Gamma_{\delta}(U)$, there is no $\psi \in V(\Gamma_{\delta}(U))$ with $\psi \in N(\mu) \cap N(\lambda)$. Assume there exist nonzero submodules $N_1 \ll_{\delta} U$ and $N_2 \ll_{\delta} U$. Since $N_1 \cap N_2 \ll_{\delta} U$, they are adjacent vertices of the graph $\Gamma_{\delta}(U)$ besides too, there is no $\psi \in V(\Gamma_{\delta}(U))$ such that $\psi \in N(\mu) \cap N(\lambda)$, which is a illogicality by Theorem 3.4(1).

(2) \Rightarrow (3) Presume there is no nonzero δ -small submodules in U. As $h \cap h$ is not δ -small for every couple of non- δ -small nontrivial submodules \hbar , \hbar of U, $\Gamma_{\delta}(U)$ has no triangle. Besides, Let S be the unique nonzero δ -small submodule of U. At that point for every three random vertices N_1, N_2 , and N_3 of the graph $\Gamma_{\delta}(U)$, at least two of them are not δ -small. Let $S = N_1$. As $N_2 \cap N_3$ is not a δ -small

submodule of U, then $N_2 - S - N_3$ is a path. Also if S≠N_i, for $i = 1, 2, 3$. Since N_i∩N_i is not a δ -small submodule of U, for $i, j = 1, 2, 3$ and $i \neq j$, then N_1, N_2 , and N_3 are not adjacent vertices in the graph $\Gamma_{\delta}(U)$. Hence, the graph $\Gamma_{\delta}(U)$ has no any triangle. $(3) \Rightarrow (1)$ It is clear.

Proposition 3.6. Let $\delta(U) \neq 0$ of a finitely generated R-module U, then the graph $\Gamma_{\delta}(U)$ has a triangle.

Proof. Since U is finitely generated, from this time $(0) \neq \delta(U) \ll_{\delta} U$ according to Lemma 1.3(4). Now consider two possible cases for $\delta(U)$.

Case I: If $\delta(U)$ is a simple submodule of U, because $\delta(U) = \sum_{i \in \Lambda} U_i$, where $U_i \ll_{\delta} U$, $\forall i \in \Lambda$, we choose $\Gamma = \sum_{i \in \Lambda - \{1\}} U_i$. Then $\{U_1, \delta(U), \Gamma\}$ is a trian-

gle in $\Gamma_{\delta}(U)$.

Case II: If $\delta(U)$ is a non-simple submodule of U, at that point there exists a non-trivial submodule $Z \leq U$ which $Z \subset \delta(U)$. Since $\delta(U) \ll U$ then $Z \ll U$ U which $Z\subset \delta(U)$. Since $\delta(U)\ll_{\delta} U$, then, $Z\ll_{\delta} U$. Thus for each vertex H of $\Gamma_{\delta}(U)$, $\{Z, \delta(U), H\}$ is a triangle in $\Gamma_{\delta}(U)$.

Definition 3.7. [\[8](#page-7-9)] If a graph Γ has a drawing in a plane without crossings, then Γ is said to be planar.

Theorem 3.8. [8, Th. 10.30] A graph is planar if it contains no subdivision of either K_5 or $K_{3,3}$.

Proposition 3.9. If $|\mathcal{S}_{\delta}(U)| = 1$ or $|\mathcal{S}_{\delta}(U)| = 2$, and the intersection of every pair of non-small submodules of U is a non-small submodule, then $\Gamma_{\delta}(U)$ is a planar graph.

Proof. Similar to that in [13, Theorem 2.15].

Proposition 3.10. For any module U, if $|S_\delta(U)| \geq 3$, then $\Gamma_{\delta}(U)$ is not a planar graph.

Proof. Suppose $|S_{\delta}(U)| \geq 3$. Then U has at least three nonzero δ -small submodules, at a guess M , N and P. Any one of the vertices $M + N$, $N + P$ and $M + P$ P are non-zero submodules and adjacent to all of submodules M, N and P in $\Gamma_{\delta}(U)$. $\Gamma_{\delta}(U)$ contains a complete graph K_5 for example the subgraph induced on the set ${M, N, P, M+N, N+P}$. By Th. 3.8, $\Gamma_{\delta}(U)$ is not planar.

References

- [1] Akbari S, Tavallaee HA, Khalashi Ghezelahmad S. Intersection graph of submodules of a module. J Algebra Appl 2012;11(1):1250019.
- [2] Alwan AH. Maximal ideal graph of commutative semirings. Int J Nonlinear Anal Appl $2021;12(1):913-26$.
- [3] Alwan AH. A graph associated to proper non-small subsemimodules of a semimodule. Int J Nonlinear Anal Appl 2021;12(2):499-509.
- [4] Alwan AH. Maximal submodule graph of a module. J Discrete Math Sci Cryptogr 2021;24(7):1941-9.
- [5] Alwan AH, Nema ZA. On the co-intersection graph of subsemimodules of a semimodule. Int J Nonlinear Anal Appl 2022;13(2):2763-70.
- [6] Alwan AH. Small intersection graph of subsemimodules of a semimodule. Commun. Combin., Cryptogr. & Computer Sci. 2022;1:15-22
- [7] Beck I. Coloring of commutative rings. J Algebra 1988;116: $208 - 26$
- [8] Bondy JA, Murty USR. Graph theory, Graduate texts in mathematics 244. New York: Springer; 2008.
- [9] Bosak J. The graphs of semigroups. In: Theory of graphs and its applications. New York: Academic Press; 1964. p. 119-25.
- [10] Chakrabarty I, Ghosh S, Mukherjee TK, Sen MK. Intersection graphs of ideals of rings. Discrete Math 2009;309: $5381 - 92$.
- [11] Haynes TW, Hedetniemi ST, Slater PJ, editors. Fundamentals of domination in graphs. New York, NY: Marcel Dekker, Inc.; 1998.
- [12] Inankil H, Halicioglu S, Harmanci A. A generalization of supplemented modules. Algebra Discrete Math 2011;11(1): $59 - 74.$
- [13] Mahdavi LA, Talebi Y. On the small intersection graph of submodules of a module. Algebraic Structures and Their Applications 2021;8(1):117-30.
- [14] Byukasik BN, Lomp C. When δ -semiperfect rings are semiperfect. Turk J Math 2010;34:317-24.
- [15] Turkmen BN, Turkmen E. δ ss-supplemented modules and rings. An. St. Univ. Ovidius Constanta 2020;28(3):193-216.
- [16] Wisbauer R. Foundations of module and ring theory. Gordon & Breach; 1991.
- [17] Zhou Y. Generalizations of perfect, semiperfect, and semiregular rings. Algebra Colloq 2000;7(3):305-18.